Un sistema de compensación simple de campo geomagnético para aplicaciones con campos magnéticos uniformes

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.n83a09

Palabras clave:

campo magnético uniforme, bobinas Helmholtz cuadradas, sensores de efecto Hall tri-axiales, control de campo magnético, compensación de campo geomagnético

Resumen

En este trabajo se presenta la implementación de un sistema de compensación simple de campo geomagnético para aplicaciones con campos magnéticos uniformes de baja magnitud y frecuencia. El sistema de compensación está basado en un arreglo tri-axial de bobinas Helmholtz cuadradas, un arreglo tri-axial de sensores de efecto Hall y un sistema microcontrolado con el propósito de compensar pequeñas variaciones del campo magnético ambiente (magnitudes cercanas al campo geomagnético entre 25 μT y 65 μT) sobre un volumen de trabajo. El campo geomagnético obtenido en las pruebas experimentales de 39,5 μT fue compensado, logrando un volumen uniforme con campo magnético aproximadamente igual a cero. Finalmente, el sistema propuesto surge como una alternativa simple para el control y compensación de campo magnético en diversas aplicaciones.

|Resumen
= 349 veces | PDF (ENGLISH)
= 224 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Andrés Fernando Restrepo-Álvarez, Universidad del Valle

Grupo de Investigación en Control Industrial, Facultad de Ingeniería.

Edinson Franco-Mejía, Universidad del Valle

Grupo de Investigación en Control Industrial, Facultad de Ingeniería.

Héctor Cadavid-Ramírez, Universidad del Valle

Grupo de Investigación en Alta Tensión (GRALTA), Facultad de Ingeniería.

Carlos Rafael Pinedo-Jaramillo, Universidad del Valle

Grupo de Investigación en Percepción y Sistemas Inteligentes, Facultad de Ingeniería.

Citas

A. Smith, B. E. Anderson, S. Chaudhury, and P. S. Jessen, “Three-axis measurement and cancellation of background magnetic fields to less than 50 µG in a cold atom experiment,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 44, no. 20, 2011.

I. Khalil, L. Abelmann, and S. Misra, “Magnetic-based motion control of paramagnetic microparticles with disturbance compensation,” IEEE Transactions on Magnetics, vol. 50, no. 10, pp. 1–10, 2014.

G. Go et al., “Electromagnetic navigation system using simple coil structure (4 coils) for 3-D locomotive microrobot,” IEEE Transactions on Magnetics, vol. 51, no. 4, pp. 1–7, 2015.

J. K. Nam, S. M. Jeon, W. S. Lee, and G. H. Jang, “Control of a three-dimensional magnetic force generated from a magnetic navigation system to precisely manipulate the locomotion of a magnetic microrobot,” Journal of Applied Physics, vol. 117, no. 17, pp. 1–6, 2015.

J. Schuderer et al., “In vitro exposure apparatus for ELF magnetic fields,” Bioelectromagnetics, vol. 25, no. 8, pp. 582-591, 2004.

A. F. Restrepo, E. Franco, and C. R. Pinedo, “Metodología de diseño e implementación de un sistema para generación de campos magnéticos uniformes con bobinas Helmholtz cuadrada tri-axial,” Informacion Tecnologica, vol. 25, no. 2, pp. 3–14, 2014.

V. V. Krylov et al., “An experimental study of the biological effects of geomagnetic disturbances: The impact of a typical geomagnetic storm and its constituents on plants and animals,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 110–111, pp. 28–36, 2014.

J. Chen et al., “An improved 3-D magnetic field generator with larger uniform region,” IEEE Transactions on Applied Superconductivity, vol. 26, no. 7. pp. 1–5, 2016.

G. O. Forte, G. Farrher, L. R. Canali, and E. Anoardo, “Automatic shielding-shimming magnetic field compensator for excluded volume applications,” IEEE Transactions on Control Systems Technology, vol. 18, no. 4, pp. 976–983, 2010.

J. Kellogg, Magnetic active compensation system (MACS) for electron microscopy, 2003. [Online]. Available: http://www.ets-lindgren.com/pdf/kelloggi_03.pdf. Accessed on: Sep. 25, 2015.

Bartington Intruments Ltd, Mag-03 and Mag690 Bartington Instruments’ magnetometers for use in magnetic field cancellation and custom field creation - Case study, 2001. [Online]. Available: http://www.techmfg.com/appnotes/Bartington%20magnetic%20field%20cancellation%20app%20note.pdf. Accessed on: Apr. 14, 2015.

C. Dunnam, “Active feedback system for suppression of alternating magnetic fields,” U.S. Patent 5 465 012, Nov. 7, 1995.

ETS-Lindgren, Magnetic active compensation system for electron beam applications, 2008. [Online]. Available: http://www.ets-lindgren.com/pdf/iMagneticActiveCompensationB.pdf. Accessed on: Apr. 14, 2015.

MEDA, Compensation of earth’s field with a three-axis helmholtz coil, 1999. [Online]. Available: http://meda.com/Application%20Notes/an108.pdf. Accessed on: Apr. 14, 2015.

C. F. Martino, L. Portelli, K. McCabe, M. Hernandez, and F. Barnes, “Reduction of the Earth’s magnetic field inhibits growth rates of model cancer cell lines,” Bioelectromagnetics, vol. 31, no. 8, pp. 649–655, 2010.

P. G. Park et al., “Automatic compensation of the Earth’s magnetic field and a calibration system for magnetometers below 1 mT,” Journal of the Korean Physical Society, vol. 47, no. 4, pp. 583–585, 2005.

L. Raganella, M. Guelfi, and G. D’Inzeo, “Triaxial exposure system providing static and low-frequency magnetic fields for in vivo and in vitro biological studies,” Bioelectrochemistry and Bioenergetics, vol. 35, no. 1-2, pp. 121–126, 1994.

V. Novickij, A. Grainys, J. Novickij, and A. Lucinskis, “Programmable pulsed magnetic field system for biological applications,” IEEE Transactions on Magnetics, vol. 50, no. 11, pp. 1–4, 2014.

A. A. Malafronte and M. N. Martins, “Inexpensive magnetic field controller,” in Particle Accelerator Conference (PAC), Knoxville, USA, 2005, pp. 2833–2835.

M. Farina et al., “ELF-EMFs induced effects on cell lines: Controlling ELF generation in laboratory,” Progress In Electromagnetics Research B, vol. 24, pp. 131–153, 2010.

Y. Li, X. Zhang, G. Chen, X. Cui, and J. Liu, “Design and error analysis of geomagnetic measurement circuit based on triaxial magneto-resistive sensor,” in International Conference on Control, Automation and Systems Engineering (CASE), Singapore, Singapore, 2011, pp. 1–3.

G. B. Bell and A. A. Marino, “Exposure system for production of uniform magnetic fields,” Journal of Bioelectricity, vol. 8, no. 2, pp. 147–158, 1989.

T. Tsz-Ka, Tri-axial Square Helmholtz coil for Neutron EDM Experiment, 2004. [Online]. Available: http://www.phy.cuhk.edu.hk/sure/comments_2004/thomasli.pdf. Accessed on: Sep. 25, 2015.

D. Brodic, “Measurement of the extremely low frequency magnetic field in the laptop neighborhood,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 76, pp. 39–45, 2015.

S. M. Satav and V. Agarwal, “Design and development of a low-cost digital magnetic field meter with wide dynamic range for EMC precompliance measurements and other applications,” IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 8, pp. 2837–2846, 2009.

A. F. Restrepo, J. A. Rusca, and E. Franco, “Design of a simple electronic load controlled with configurable load profile,” Entre Ciencia e Ingeniería, vol. 7, no. 13, pp. 9–13, 2013.

A. Sobaih, B. Abouzalam, and E. Abdelrahman, “Intelligent UPS inverter control design using microcontroller,” Journal of Energy Technologies and Policy, vol. 4, no. 2, pp. 34–47, 2014.

J. C. Olivares, E. Campero, R. Escarela, S. Magdaleno, and E. Blanco, “Coil systems to generate uniform magnetic field volumes,” in COMSOL Conference, Boston, USA, 2010, pp. 1–7.

G. Hulot, C. Finlay, C. Constable, N. Olsen, and M. Mandea, “The magnetic field of planet Earth,” Space Science Reviews, vol. 152, no. 1, pp. 159–222, 2010.

R. Longoria, M. A. Oliver, J. Torres, J. L. González, and G. M. Méndez, “Diseño, construcción y prueba de un prototipo automático para compostaje,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 70, pp. 185–196, 2014.

Descargas

Publicado

2017-06-26

Cómo citar

Restrepo-Álvarez, A. F., Franco-Mejía, E., Cadavid-Ramírez, H., & Pinedo-Jaramillo, C. R. (2017). Un sistema de compensación simple de campo geomagnético para aplicaciones con campos magnéticos uniformes. Revista Facultad De Ingeniería Universidad De Antioquia, (83), 65–71. https://doi.org/10.17533/udea.redin.n83a09