Mantenimiento de unidades de generación coordinado con despacho hidrotérmico anual usando una técnica híbrida

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.n85a03

Palabras clave:

despacho hidrotérmico, programación del mantenimiento, algoritmo genético, programación lineal, algoritmo híbrido

Resumen

Este artículo presenta una técnica híbrida para resolver la programación del mantenimiento de las unidades de generación coordinado con el despacho hidrotérmico de mediano plazo. La solución se basa en el algoritmo genético de Chu-Beasley y en la técnica de programación lineal. Tiene en cuenta no linealidades derivadas del costo de los combustibles utilizados por las centrales térmicas. La salida del algoritmo genético es una propuesta de la semana de inicio del plan de mantenimiento de cada unidad de generación que minimiza el costo del despacho hidrotérmico. Las dos principales contribuciones de este trabajo son que propone un modelo matemático que coordina dos problemas que en la literatura se han resuelto de forma separada, y que aplica un algoritmo genético especializado que aún no ha sido utilizado para resolver el problema coordinado. El sistema de prueba para validar la metodología se compone de tres centrales hidroeléctricas y dos centrales térmicas dividas en 22 unidades de generación, teniendo en cuenta el mantenimiento preventivo, en un horizonte de planeamiento de un año (52 semanas). Esta metodología combina una técnica exacta con un algoritmo genético especializado, lo que favorece la convergencia.

|Resumen
= 356 veces | PDF (ENGLISH)
= 208 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

María Victoria Ramírez-Martínez, Universidad Tecnológica de Pereira

Grupo de Investigación en Planeamiento de Sistemas Eléctricos de Potencia, Facultad de Ingeniería.

Ana Milena Martínez-Sánchez, Universidad Tecnológica de Pereira

Grupo de Investigación en Planeamiento de Sistemas Eléctricos de Potencia, Facultad de Ingeniería.

Antonio Hernando Escobar-Zuluaga, Universidad Tecnológica de Pereira

Grupo de Investigación en Planeamiento de Sistemas Eléctricos de Potencia, Facultad de Ingeniería.

Frederico Gadelha Gimarães, Universidad Federal de Minas Gerais

Escuela de Ingeniería, Departamento de Ingeniería Eléctrica, DEE/UFMG.

Citas

Y. Wang and E. Handschin, “Unit maintenance scheduling in open systems using genetic algorithm,” in Transmission and Distribution Conference, LA, USA, 1999, pp. 334-339.

M. Yamamoto, R. Zaier, P. C. P. Chen, and T. Toyota, “Decision-making method of optimum inspection interval for plant maintenance by genetic algorithms,” in Proceedings Second International Symposium on Environmentally Conscious Design and Inverse Manufacturing, Tokyo, Japan, 2001, pp. 466-469.

R. Leou, “A new method for unit maintenance scheduling based on genetic algorithm,” in Power Engineering Society General, Toronto, Canada, 2003, pp. 246–251.

R. Eshraghnia, M. M. Shanechi, and H. R. Mashhadi, “A New Approach for Maintenance Scheduling of Generating Units in Power Market,” in International Conference on Probabilistic Methods Applied to Power Systems International Conference on Probabilistic Methods Applied to Power Systems, Stockholm, Sweden, 2006, pp. 1–7.

R. Eshraghnia, M. H. M. Shanty, and R. Riahi, “The effect of energy purchase cost in maintenance schedule of generating units based on genetic algorithm,” in Mediterranean Conference on Control & Automation, Athens, Greece, 2007, pp. 1–8.

M. Samhouri“An intelligent opportunistic maintenance (OM) system: A genetic algorithm approach,” in Toronto International Conference Science and Technology for Humanity (TIC-STH). IEEE, Toronto, Canada, 2009, pp. 60–65.

K. Chandrasekaran and S. P. Simon, “Unit commitment in composite generation and transmission systems using Genetic Algorithm,” in 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC). IEEE, Coimbatore, India, 2009, pp. 1115–1120.

S. Baskar, P. Subbaraj, M. Rao, and S. Tamilselvi, “Genetic algorithms solution to generator maintenance scheduling with modified genetic operators,” IEEE Proceedings - Generation, Transmission and Distribution, vol. 150, no. 1, pp. 56-60, 2003.

M. Negnevitsky and G. Kelareva, “Development of a multi-layer genetic algorithm for maintenance scheduling in power systems,” in 2008 IEEE/PES Transmission and Distribution Conference and Exposition. IEEE, Chicago, USA, 2008, pp. 1–5.

E. K. Burke and A. J. Smith, “Hybrid evolutionary techniques for the maintenance scheduling problem,” IEEE Transactions on Power Systems, vol. 15, no. 1, pp. 122–128, 2000.

K. Dahal, G. Burt, J. McDonald, and S. Galloway, “GA/SA-based hybrid techniques for the scheduling of generator maintenance in power systems,” in Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), La Jolla, USA, IEEE, 2000, pp. 567–574.

K. Suresh and N. Kumarappan, “Combined genetic algorithm and simulated annealing for preventive unit maintenance scheduling in power system,” in 2006 IEEE Power Engineering Society General Meeting, Montreal, Canada, 2006, pp. 1-5.

K. Suresh and N. Kumarappan, “Combined genetic algorithm and simulated annealing for preventive unit maintenance scheduling in power system,” in 2006 IEEE Power Engineering Society General Meeting, Montreal, Canada, 2006, pp. 1-5.

Y. Park, J. Kim, J. Park, and J. Hong, “Generating Unit Maintenance Scheduling using Hybrid PSO Algorithm,” in 2007 International Conference on Intelligent Systems, Applications to Power Systems, Toki Messe, Japan, 2007, pp. 1–6.

G. Samuel and C. Rajan, “Hybrid Particle Swarm Optimization –Genetic Algorithm and Particle Swarm Optimization– Evolutionary Programming for Long-term Generation Maintenance Scheduling,” in 2013 International Conference on Renewable Energy and Sustainable Energy [ICRESE’13], Coimbatore, India, 2013, pp. 227–232.

T. Oh, J. Lim, J. Choi, J. Cha, B. Ku, and U. Baek, “Generators maintenance scheduling using combined fuzzy set theory and GA,” in 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, Seoul, South Korea, 2011, pp. 1–4.

D. Srinivasan, K. Aik, and I. Mulyawan, “Generator maintenance scheduling with hybrid evolutionary algorithm,” in 2010 IEEE 11th International Conference on Probabilistic Methods Applied to Power Systems, Singapore, Singapore, 2010, pp. 632–637.

D. Srinivasan, K. Aik, and I. Mulyawan, “Generator maintenance scheduling with hybrid evolutionary algorithm,” in 2010 IEEE 11th International Conference on Probabilistic Methods Applied to Power Systems, Singapore, Singapore, 2010, pp. 632–637.

G. G. Samuel and C. C. Rajan, “Hybrid: Particle Swarm Optimization–Genetic Algorithm and Particle Swarm Optimization–Shuffled Frog Leaping Algorithm for long-term generator maintenance scheduling,” Int. J. Electrical Power & Energy Systems, vol. 65, pp. 432-442, 2015.

J. Kim and Z. W. Geem, “Optimal scheduling for maintenance period of generating units using a hybrid scatter-genetic algorithm,” IET Generation, Transmission & Distribution, vol. 9, no. 1, pp. 22–30, 2015.

J. Silva, M. J. Rider, R. Romero, and C. A. Murari, “Genetic algorithm of Chu and Beasley for static and multistage transmission expansion planning,” in 2006 IEEE Power Engineering Society General Meeting, Montreal, Canada, 2006, pp. 1-7.

R. Jimenez and V. Paucar, “Long Term Hydrothermal Scheduling Linear Programming Model for Large Scale Power Systems,” in 2007 Large Engineering Systems Conference on Power Engineering, Montreal, Canada, 2007, pp. 96–100.

P. Chu and J. Beasley, “A genetic algorithm for the generalised assignment problem,” Computers & Operations Research, vol. 24, no. 1, pp. 17–23, 1997.

S. Datta, M. Basu, and A. Bhattacharya, “Biogeography-Based Optimization for short-term hydrothermal scheduling,” in ICETEEEM 2012, International Conference on Emerging Trends in Electrical Engineering and Energy Management, Chennai, India, 2012, pp. 38–43.

A. Rubiales, P. Lotito, and L. Parente, “Stabilization of the generalized Benders decomposition applied to short-term hydrothermal coordination problem,” Latin America Transactions, vol. 11, no. 5, pp. 1212–1224, 2013.

G. G. Samuel and C. C. Rajan, “Hybrid Particle Swarm Optimization– Genetic algorithm and Particle Swarm Optimization– Evolutionary programming for long-term generation maintenance scheduling,” in 2013 International Conference on Renewable Energy and Sustainable Energy (ICRESE). IEEE, Coimbatore, India, 2013, pp. 227–232.

V. S. Bisht, G. Shah, N. Kushwaha, and V. Gupta, “Genetic algorithm solution for a convex hydro-thermal generation scheduling,” in 4th International Conference on Computational Intelligence and Communication Networks, CICN 2012, Mathura, India, 2012, pp. 646–650.

A. Martinez, M. Ramírez, and A. Escobar, “Middle termed hydrothermal dispatch considering maintenance outages using heuristics,” in Transmission Distribution Conference and Exposition - Latin America (PES T D-LA), 2014 IEEE PES, Medellin, Colombia, 2014, pp. 1–7.

G. Samuel and C. C. Rajan, “A modified genetic approach to long-term generation maintenance scheduling to enhance the reliability of the units,” in International Conference on Advances in Engineering, Science and Management (ICAESM -2012), Nagapattinam, Tamil Nadu, India, 2012, pp. 789–793.

M. V. Ramírez, “Despacho Hidrotérmico Anual Considerando Mantenimiento de las Unidades de Generación Usando Algoritmo Genético de Chu-Beasley,” M.S. Thesis, Universidad Tecnológica de Pereira, Pereira, Colombia, 2014.

Descargas

Publicado

2017-12-07

Cómo citar

Ramírez-Martínez, M. V., Martínez-Sánchez, A. M., Escobar-Zuluaga, A. H., & Gadelha Gimarães, F. (2017). Mantenimiento de unidades de generación coordinado con despacho hidrotérmico anual usando una técnica híbrida. Revista Facultad De Ingeniería Universidad De Antioquia, (85), 18–32. https://doi.org/10.17533/udea.redin.n85a03