Device for simulation of restrictive pathologies in healthy subjects with non-invasive mechanical ventilation

Keywords: Respiratory mechanics, Thoracic compliance, Restrictive diseases, Control systems

Abstract

The respiratory mechanics assessment in patients with mechanical ventilation allows to adjust the treatment in intensive care units related to the ventilatory mode and parameters of mechanical ventilator settings. However, to estimate the compliance and respiratory resistance in spontaneous ventilation is only possible with obstructive maneuvers or invasive techniques. One of the most important limitations to develop new techniques for respiratory mechanics estimation is the non-stationary characteristic of the system and the variability of parameters according to the variability of the breathing pattern. The aim of this article is to present and evaluate a device that allows artificially modify the thoracic compliance of a healthy subject, which will make possible to register in the future a useful database for the development of techniques for estimating ventilatory mechanics. The device was formed by a cuirass, a pump and a controller that allows to vary the pressure inside the cuirass, which was placed in the chest and abdomen of the volunteers to change compliance in a controlled manner. 5 volunteers participated in the performance test of the device, achieving percentage changes of 34.5 ± 9.4% respecting their resting value for a pressure of 10 cmH2O and changes of 46.8 ± 5.7% for the maximum pressure of 20 cmH2O. It was possible to design a device that allowed to artificially modify thoracic compliance in a comparable way for any healthy subject.

|Abstract
= 133 veces | PDF
= 137 veces|

Downloads

Download data is not yet available.

Author Biographies

Isabel Cristina Muñoz-Ortega, University of Antioquia

Faculty of Engineering, Department of Bioengineering.

David Alexander Urrego-Higuita, University of Antioquia

Faculty of Engineering, Department of Bioengineering.

Andrés Felipe Vallejo-Aristizábal, University of Antioquia

Faculty of Engineering, Department of Bioengineering.

Alher Mauricio Hernández-Valdivieso, University of Antioquia

Faculty of Engineering, Department of Bioengineering.

References

J. H. Bates, Lung Mechanics. An Inverse Modeling Approach, 1 st ed. New York, USA: Cambridge University Press, 2009.

J. W. Kreit, ”Mecánica del Sistema Respiratorio,” in Tratado de medicina crítica y terapia intensiva, 4 th ed., W. C. Schoemaker (ed). Madrid, España: Médica Panamericana, 2002, pp. 1164-1176.

T. Troosters, R. Gosselink, and M. Decramer, ”Respiratory muscle assessment,” in Lung Function Testing: European Respiratory Monograph, vol.10, R. Gosselink and H. Stam (ed). Wakefield, UK: European Respiratory Society Journals, 2005, pp. 57-71.

A. Carlucci, L. Pisani, P. Ceriana, A. Malovini, and S. Nava, ”Patient-ventilator asynchronies: may the respiratory mechanics play a role?,” Critical Care, vol. 17, no. 2, pp. R54, 2013.

A. Lomas and L. Jara, ”Manejo respiratorio perioperatorio del paciente obeso,” Rev. Esp. Patol. Torac., vol. 25, no. 3, pp. 201-208, 2013.

Ministerio de Salud y Protección Social, Análisis de Situación de Salud (ASIS), Ministerio de Salud y Protección Social, Bogotá, Colombia, 2016.

OMS: Organización mundial de la salud, Obesidad y Sobrepeso, 2015. [Online]. Available: http://www.who.int/mediacentre/factsheets/fs311/es/. Accessed on: Mar. 28, 2017.

C. E. Battle, H. Hutchings, and P. A. Evans, ”Risk factors that predict mortality in patients with blunt chest wall trauma: A systematic review and meta-analysis,” Injury, vol. 43, no. 1, pp. 8-17, 2012.

M. F. Undirraga, D. P. Rodríguez, and P. D. Lazo, ”Trauma de tórax,” Rev. Médica Clínica Las Condes, vol. 22, no. 5, pp. 617-622, 2011.

J. D. Charry et al., ”Índice de shock como factor predictor de mortalidad en el paciente con trauma penetrante de tórax,” Rev. Colomb. Cirugía, vol. 30, pp. 24-28, 2015.

M. Eberlein, G. A. Schmidt, and R. G. Brower, ”Chest Wall Strapping. An Old Physiology Experiment with New Relevance to Small Airways Diseases,” Ann. Am. Thorac. Soc., vol. 11, no. 8, pp. 1258-1266, 2014.

D. G. Chapman, N. Berend, K. R. Horlyck, G. G. King, and C. M. Salome, ”Does increased baseline ventilation heterogeneity following chest wall strapping predispose to airway hyperresponsiveness?,” J. Appl. Physiol., vol. 113, no. 1, pp. 25-30, 2012.

C. T. Mendonca, M. R. Schaeffer, P. Riley, and D. Jensen, ”Physiological mechanisms of dyspnea during exercise with external thoracic restriction: role of increased neural respiratory drive,” J. Appl. Physiol., vol. 116, no. 5, pp. 570-581, 2014.

I. C. Muñoz and A. M. Hernández, ”Noninvasive approach to estimate ventilatory mechanics in spontaneous breathing with different PEEP and pressure support values: validation with mechanical simulation,” in VII Latin American Congress on Biomedical Engineering CLAIB, Bucaramanga, Colombia, 2016, pp. 241-244.

E. García, L. Amado, and G. M. Albaiceta, ”Monitorization of respiratory mechanics in the ventilated patient,” Med. Intensiva (English Ed.), vol. 38, no. 1, pp. 49-55, 2014.

Published
2018-03-27
How to Cite
Muñoz-Ortega I. C., Urrego-Higuita D. A., Vallejo-Aristizábal A. F., & Hernández-Valdivieso A. M. (2018). Device for simulation of restrictive pathologies in healthy subjects with non-invasive mechanical ventilation. Revista Facultad De Ingeniería Universidad De Antioquia, (86), 19-26. https://doi.org/10.17533/udea.redin.n86a03