Dispositivo para simulación de patologías restrictivas en sujetos sanos ventilados mecánicamente de manera no invasiva
DOI:
https://doi.org/10.17533/udea.redin.n86a03Palabras clave:
mecánica ventilatoria, compliancia torácica, enfermedades restrictivas, sistemas de controlResumen
La evaluación de la mecánica ventilatoria en pacientes ventilados mecánicamente permite ajustar su tratamiento en las unidades de cuidados intensivos en términos del ajuste del modo ventilatorio y sus parámetros asociados. Sin embargo, solo con maniobras obstructivas es posible estimar parámetros como la compliancia y la resistencia respiratorias en ventilación espontánea. Una de las limitaciones más importantes en el desarrollo de técnicas de estimación no obstructivas de la mecánica ventilatoria es que se trata de un sistema no estacionario y la variación de sus parámetros está sujeta a la variabilidad del patrón ventilatorio. Este artículo tiene como objetivo presentar y evaluar un dispositivo que permita modificar artificialmente la distensibilidad torácica de un sujeto sano, lo cual permitirá registrar en un futuro una base de datos útil para el desarrollo de técnicas de estimación de la mecánica ventilatoria. El dispositivo se conformó por una coraza, una bomba y un controlador que permite variar la presión al interior de la coraza, la cual fue ubicada en el pecho y abdomen de los voluntarios para cambiar la distensibilidad de manera controlada. 5 voluntarios participaron en la avaluación del dispositivo, consiguiendo cambios porcentuales de 34,5 ± 9,4% respecto a su valor en reposo para una presión de 10 cmH2O y cambios de 46,8 ± 5,7% para la máxima presión de 20 cmH2O. Se logró diseñar un dispositivo que permitiera modificar artificialmente la distensibilidad torácica de manera comparable para cualquier sujeto sano.
Descargas
Citas
J. H. Bates, Lung Mechanics. An Inverse Modeling Approach, 1 st ed. New York, USA: Cambridge University Press, 2009.
J. W. Kreit, ”Mecánica del Sistema Respiratorio,” in Tratado de medicina crítica y terapia intensiva, 4 th ed., W. C. Schoemaker (ed). Madrid, España: Médica Panamericana, 2002, pp. 1164-1176.
T. Troosters, R. Gosselink, and M. Decramer, ”Respiratory muscle assessment,” in Lung Function Testing: European Respiratory Monograph, vol.10, R. Gosselink and H. Stam (ed). Wakefield, UK: European Respiratory Society Journals, 2005, pp. 57-71.
A. Carlucci, L. Pisani, P. Ceriana, A. Malovini, and S. Nava, ”Patient-ventilator asynchronies: may the respiratory mechanics play a role?,” Critical Care, vol. 17, no. 2, pp. R54, 2013.
A. Lomas and L. Jara, ”Manejo respiratorio perioperatorio del paciente obeso,” Rev. Esp. Patol. Torac., vol. 25, no. 3, pp. 201-208, 2013.
Ministerio de Salud y Protección Social, Análisis de Situación de Salud (ASIS), Ministerio de Salud y Protección Social, Bogotá, Colombia, 2016.
OMS: Organización mundial de la salud, Obesidad y Sobrepeso, 2015. [Online]. Available: http://www.who.int/mediacentre/factsheets/fs311/es/. Accessed on: Mar. 28, 2017.
C. E. Battle, H. Hutchings, and P. A. Evans, ”Risk factors that predict mortality in patients with blunt chest wall trauma: A systematic review and meta-analysis,” Injury, vol. 43, no. 1, pp. 8-17, 2012.
M. F. Undirraga, D. P. Rodríguez, and P. D. Lazo, ”Trauma de tórax,” Rev. Médica Clínica Las Condes, vol. 22, no. 5, pp. 617-622, 2011.
J. D. Charry et al., ”Índice de shock como factor predictor de mortalidad en el paciente con trauma penetrante de tórax,” Rev. Colomb. Cirugía, vol. 30, pp. 24-28, 2015.
M. Eberlein, G. A. Schmidt, and R. G. Brower, ”Chest Wall Strapping. An Old Physiology Experiment with New Relevance to Small Airways Diseases,” Ann. Am. Thorac. Soc., vol. 11, no. 8, pp. 1258-1266, 2014.
D. G. Chapman, N. Berend, K. R. Horlyck, G. G. King, and C. M. Salome, ”Does increased baseline ventilation heterogeneity following chest wall strapping predispose to airway hyperresponsiveness?,” J. Appl. Physiol., vol. 113, no. 1, pp. 25-30, 2012.
C. T. Mendonca, M. R. Schaeffer, P. Riley, and D. Jensen, ”Physiological mechanisms of dyspnea during exercise with external thoracic restriction: role of increased neural respiratory drive,” J. Appl. Physiol., vol. 116, no. 5, pp. 570-581, 2014.
I. C. Muñoz and A. M. Hernández, ”Noninvasive approach to estimate ventilatory mechanics in spontaneous breathing with different PEEP and pressure support values: validation with mechanical simulation,” in VII Latin American Congress on Biomedical Engineering CLAIB, Bucaramanga, Colombia, 2016, pp. 241-244.
E. García, L. Amado, and G. M. Albaiceta, ”Monitorization of respiratory mechanics in the ventilated patient,” Med. Intensiva (English Ed.), vol. 38, no. 1, pp. 49-55, 2014.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Revista Facultad de Ingeniería Universidad de Antioquia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.