Características superficiales de la arcilla utilizando microscopía de fuerza atómica

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.n87a04

Palabras clave:

arcillas, mampostería, FRX, DRX, AFM

Resumen

El primer componente para la fabricación de productos de mampostería para la construcción es la arcilla, la cual aporta la plasticidad que facilita el moldeo y el manejo del producto. El segundo componente es el feldespato en su formación como alúmina (Al2O3) que se utiliza como fundente. La tercera es la sílice (SiO2) que se utiliza como un material de relleno y estabilizador. Estos elementos se determinan mediante la composición química por análisis de fluorescencia o difracción de rayos X, la cual es la base de la clasificación moderna de los minerales. De esta manera, el principal objetivo de este trabajo es estudiar las características superficiales de muestras de arcilla de una empresa dedicada a producción de bloques H-10 en la región Norte Santandereana, mediante el estudio de las superficies de las muestras seleccionadas a través de la técnica de Microscopía de Fuerza Atómica con el propósito de comparar los resultados con los obtenidos en la bibliografía teniendo en cuenta los elementos químicos en su mayor composición. Los resultados demuestran que ésta es una técnica que permite identificar los componentes de la arcilla validando de esta manera lo encontrado en los análisis físicos y químicos, con lo cual se espera brindar un aporte científico por AFM o MFA, debido a que existe poca información relacionada en la caracterización topográfica de materiales arcillosos.

|Resumen
= 598 veces | PDF (ENGLISH)
= 268 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Ricardo Andrés García-León, Universidad Francisco de Paula Santander

Docente Investigador, Departamento de Ingeniería Mecánica, Grupo de Investigación INGAP.

Eder Norberto Flórez-Solano, Universidad Francisco de Paula Santander

Docente Investigador, Departamento de Ingeniería Mecánica, Grupo de Investigación INGAP.

Carlos Humberto Acevedo-Peñaloza, Universidad Francisco de Paula Santander

Docente Investigador, Departamento de Ingeniería Mecánica, Grupo de Investigación GIDIMA.

Citas

O. Sahin, S. Magonov, C. Su, C. F. Quate, and O. Solgaard, “An atomic force microscope tip designed to measure time-varying nanomechanical forces,” Nature Nanotechnology , vol. 2, no. 8, pp. 507–514, Jul. 2007.

E. A. López and S. D. Solares, “El microscopio de fuerza atómica: métodos y aplicaciones,” Revista de la Universidad del Valle Guatemala , vol. 28, no. 1, pp. 14–28, 2014.

(2012) Atomic force microscopy. University of Rochester. Accessed Apr. 24, 2017. [Online]. Available: www.optics.rochester.edu/workgroups/cml/opt307/spr12/nilotpal/ HTMLfiles/AFM.htm

V. Ivanov, J. Chu, V. Stabnikov, and B. Li, “Estrengthening of soft marine clay using bioencapsulation,” Journal Marine Georesources & Geotechnology , vol. 33, no. 4, pp. 320–324, Jan. 2015.

S. Pineda, Z. J. Han, and K. Ostrikov, “Plasma-enabled carbon nanostructures for early diagnosis of neurodegenerative diseases,” Materials , vol. 7, no. 7, pp. 4896–4929, Jun. 2014.

L. Vázquez. Afm (atomic force microscope). [Online]. Available: www.icmm.csic.es/fis/espa/afm.html

N. S. et al. , “Characterization of nanoreinforcement dispersion in inorganic nanocomposites: A review,” Materials , vol. 7, no. 6, pp. 4148–4181, May 2014.

S. E. et al. , “Manipulation of the catalyst-support interactions for inducing nanotube forest growth,” J. Appl. Phys. , vol. 109, no. 4, pp. 044 303.1–044 303.7, Feb. 2011.

Y. Kobayashi, V. Salgueiriño, and L. M. Liz, “Deposition of silver nanoparticles on silica spheres by pretreatment steps in electroless plating,” Chemistry of Materials , vol. 13, no. 5, pp. 1630–1633, Apr. 2001.

L. B. Monroy, J. J. Olaya, M. Rivera, A. Ortiz, and G. Santana, “Growth study of y-ba-cu-o on buffer layers and different substrates made by ultrasonic spray pyrolysis,” Rev. Latinoam. Metal. y Mater. , vol. 32, no. 1, pp. 21–29, Jan. 2012.

K. Kim, B. A. Lee, X. H. Piao, H. J. Chung, and Y. J. Kim, “Surface characteristics and bioactivity of an anodized titanium surface,” J. Periodontal Implant Sci. , vol. 43, no. 4, pp. 198–205, Aug. 2012.

X. W. T. et al. , “In vitro effect of a corrosive hostile ocular surface on candidate biomaterials for keratoprosthesis skirt,” Br. J. Ophthalmol. , vol. 96, pp. 1252–1258, Sep. 2012.

T. Öhlund, J. Örtegren, S. Forsberg, and H. E. Nilsson, “Paper surfaces for metal nanoparticle inkjet printing,” Appl. Surf. Sci. , vol. 259, pp. 731–739, Oct. 2012.

P. Henrique, C. Camargo, K. G. Satyanarayana, and F. Wypych, “Nanocomposites: Synthesis, structure, properties and new application opportunities,” Mater. Res. , vol. 12, no. 1, pp. 1–39, Jan. 2009.

M. R. Belkhedkar, A. U. Ubale, Y. S. Sakhare, N. Zubair, and M. Musaddique, “Characterization and antibacterial activity of nanocrystalline mn doped fe 2 o 3 thin films grown by successive ionic layer adsorption and reaction method,” J. Assoc. Arab Univ. Basic Appl. Sci , vol. 21, pp. 38–44, Oct. 2016.

P . Lu and Y. L. Hsieh, “Highly pure amorphous silica nano-disks from rice straw,” JPowder Technol. , vol. 225, pp. 149–155, Oct. 2012.

D. A. C. Brownson, D. K. Kampouris, and C. E. Banks, “Graphene electrochemistry: Fundamental concepts through to prominent applications,” Chemical Society Reviews , vol. 41, no. 21, pp. 6944–6976, Nov. 2012.

B. R. B. et al. (1999, Dec. 9) Atomic force microscopy study of clay mineral dissolution atomic force. [Online]. Available: https://vtechworks.lib.vt.edu/bitstream/handle/10919/25984/Bickmorebrb_diss.pdf?sequence=3.

M. Prasad, M. Kopycinska, U. Rabe, and W. Arnold, “Measurement of young’s modulus of clay minerals using atomic force acoustic microscopy,” Geophys. Res. Lett. , vol. 29, no. 8, pp. 13.1–13.4, Apr. 2002.

V. Gupta, M. A. Hampton, A. V. Nguyen, and J. D. Miller, “Crystal lattice imaging of the silica and alumina faces of kaolinite using atomic force microscopy,” J. Colloid Interface Sci. , vol. 352, no. 1, pp. 75–80, Dec. 2010.

R. A. García and R. Bolívar, “Caracterización hidrométrica de las arcillas utilizadas en la fabricación de productos cerámicos en ocaña, norte de santander,” INGECUC , vol. 13, no. 1, pp. 47–56, 2017.

R. A. García, R. Bolívar, and E. N. Flórez, “Validación de las propiedades físico-mecánicas de bloques h-10 fabricados en ocaña norte de santander y la región,” Ingenio UFPSO , vol. 10, no. 1, pp. 17–26, 2016.

F. D. B. de Sousa and C. H. Scuracchio, “The use of atomic force microscopy as an important technique to analyze the dispersion of nanometric fillers and morphology in nanocomposites and polymer blends based on elastomers,” Polímeros , vol. 24, no. 6, pp. 661–672, Nov. 2014.

X. Zhang, H. Yi, Y. Zhao, and S. Song, “Quantitative determination of isomorphous substitutions on clay mineral surfaces through afm imaging: A case of mica,” Colloids Surfaces A Physicochem. Eng. Asp , vol. 533, pp. 55–60, Nov. 2017.

M. Brigatti, E. Galán, and B. K. G. Theng, “Chapter 2 structures and mineralogy of clay minerals,” vol. 1, pp. 19–86, Dec 2006.

V. Gélinas and D. Vidal, “Determination of particle shape distribution of clay using an automated afm image analysis method,” Powder Technol. , vol. 203, no. 2, pp. 254–264, Nov. 2010.

R. A. Schoonheydt, “Reflections on the material science of clay minerals,” Appl. Clay Sci. , vol. 131, pp. 107–112, Oct. 2015.

M. B. Roquet, “Mineralogía de la pegmatita casa de piedra, grupo pegmatítico villa praga - las lagunas, subgrupo potrerillos, san luis, argentina,” in 11° Congreso de mineralogía y metalogenia , San Luis, Argentina, 2013, pp. 133–138.

S. M. Rozo, J. Sánchez, and J. F. Gelves, “Evaluación de minerales alumino silicatos de norte de santander para fabricar piezas cerámicas de gran formato,” Rev. Fac. Ing. , vol. 24, no. 38, pp. 53–61, 2015.

N. J. Perales and M. Barrera, “Análisis estructural por drx de una arcilla natural colombiana modificada por pilarización,” Rev. Invest. Univ. Quindío. , vol. 24, no. 1, pp. 100–106, 2013.

E. Ramos, J. J. Guzmán, M. C. Sandoval, and Y. Gallaga, “Caracterización de arcillas del estado de guanajuato y su potencial aplicación en cerámica,” Acta Univ. , vol. 12, no. 1, pp. 23–30, 2002.

N. M. P. D. etal. , “Morphological characterization of soil clay fraction in nanometric scale,” PowderTechnol. , vol. 241, pp. 36–42, Jun. 2013.

A. Sachan, “Use of atomic force microscopy (afm) of microfabric study of cohesive soils,” J.Microsc. , vol. 232, no. 3, pp. 422–431, Nov. 2008.

L. F. Vesga, “Equivalent effective stress and compressibility of unsaturated kaolinite clay subjected to drying,” J. Geotech. Geoenvironmental Eng. , vol. 134, no. 3, pp. 366–378, Mar. 2008.

C. M. F. Vieira, R. Sánchez, and S. N. Monteiro, “Characteristics of clays and properties of building ceramics in the state of rio de janeiro, brazil,” Constr. Build. Mater. , vol. 22, no. 5, pp. 781–787, May 2008.

J. D. Santos, P. Y. Malagón, and E. M. Cordoba, “Caracterización de arcillas y preparación de pastas cerámicas para la fabricación de tejas y ladrillos en la región de barichara, santander,” DYNA , vol. 78, no. 167, pp. 50–58, Jul. 2011.

C. M. Ríos, “Uso de materias primas colombianas para el desarrollo de baldosa cerámicas con alto grado de gresificación,” M.S. thesis, Facultad de Minas Escuela de Ingeniería de Materiales, Universidad Nacional de Colombia, Medellín, Colombia, 2009.

L. C. Illera, “Raw materials for the ceramics industry from norte de santander. i. mineralogical, chemical and physical characterization,” Rev. Fac. Ing. Univ. Antioquia , no. 80, pp. 31–37, Jul. 2016.

Descargas

Publicado

2018-06-07

Cómo citar

García-León, R. A., Flórez-Solano, E. N., & Acevedo-Peñaloza, C. H. (2018). Características superficiales de la arcilla utilizando microscopía de fuerza atómica. Revista Facultad De Ingeniería Universidad De Antioquia, (87), 23–34. https://doi.org/10.17533/udea.redin.n87a04