Actividad fotocatalítica en luz visible de un cemento con adición de nano partículas de TiO2-xNy
DOI:
https://doi.org/10.17533/udea.redin.20190730Palabras clave:
cemento autolimpiante, nanopartículas de oxinitruro de titanio (TiO2-xNy), actividad fotocatalítica bajo luz visible, decaimiento derodamina B, fotocatálisisResumen
Se estudió la actividad autolimpiante en pastas de cemento Portland adicionadas con nanopartículas de oxinitruro de titanio (TiO2-xNy ). Se evaluaron 1% y 3% de TiO2-xNy bajo irradiación de luz UV y visible, a 65 horas y 28 días de curado. Rodamina B fue el pigmento utilizado y su pérdida de color en las pastas se determinó utilizando un Espectrómetro UV / Vis usando las coordenadas CIE (Comisión Internacional de la Eclara) L ∗ , a ∗ , b ∗ . La decoloración del pigmento en las muestras se estableció como el coeficiente de eficiencia fotocatalítica (ε). Además, muestras con nanopartículas de TiO2 (1% y 3%) se estudiaron en las mismas condiciones y sus rendimientos se compararon con los obtenidos con TiO2-xNy . La presencia de nitrógeno en la estructura del TiO2 se evidenció mediante difracción de rayos X, espectrofotometría ultravioleta-visible de reflectancia difusa y análisis elemental CHN. La banda prohibida para TiO2 y TiO2-xNy se determinó mediante la función Kubelka-Munk transformada ( [F (R∞) hv] 1/2 ) . Los resultados mostraron un comportamiento similar para ambas adiciones bajo irradiación ultravioleta, siendo 3% la adición con la mayor eficiencia fotocatalítica en las primeras edades de curado. Sin embargo, el TiO2-xNy mostró actividad bajo irradiación con luz visible, a diferencia del TiO2, que solo fue activo bajo luz UV. A edades de curado tardío, las muestras con 3% de TiO2-xNy presentaron la mayor eficiencia bajo irradiación de luz UV y visible.
Descargas
Citas
A. Folli, U. Jakobsen, G. Guerrini, and D. Macphee, “Rhodamine b discolouration on tio2 in the cement environment: A look at fundamental aspects of the self-cleaning effect in concretes,” Journal of Advanced Oxidation Technologies, vol. 12, no. 5, November 30 2016. [Online]. Available: https://doi.org/10.1515/jaots-2009-0116
T. Maggos, J. Bartzis, M. Liakou, and C. Gobin, “Photocatalytic degradation of NOx gases using TiO2-containing paint: A real scale study,” Journal of Hazardous Materials, vol. 146, no. 3, July 31 2007. [Online]. Available: https://doi.org/10.1016/j.jhazmat.2007.04.079
T. S. Le and et al, “Photocatalytic equipment with nitrogen-doped titanium dioxide for air cleaning and disinfecting,” Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 5, no. 1, February 28 2014. [Online]. Available: https://doi.org/10.1088%2F2043-6262%2F5%2F1%2F015017
L. Baltes, M. Patachia, O. Tierean, M. Ekincioglu, and M. Ozkul, “Photoactive polymer-cement composites for tannins removal from wastewaters,” Journal of Environmental Chemical Engineering, vol. 5, no. 4, August 2018. [Online]. Available: https://doi.org/10.1016/j.jece.2018.06.039
J. Gelves and et al, “Activity of an iron Colombian natural zeolite as potential geo-catalyst for NH3-SCR of NOx,” Catalysis Today, vol. 320, January 15 2019. [Online]. Available: https://doi.org/10.1016/j.cattod.2018.01.025
V. Binas, K. Sambani, T. Maggos, A. Katsanaki, and G. Kiriakidis, “Synthesis and photocatalytic activity of mn-doped tio2 nanostructured powders under uv and visible light,” Applied Catalysis B: Environmental, vol. 113-114, February 22 2012. [Online]. Available: https://doi.org/10.1016/j.apcatb.2011.11.021
J. Cohen, G. Sierra, and J. Tobón, “Evaluation of Photocatalytic Properties of Portland Cement Blended with Titanium Oxynitride (TiO2−xNy) Nanoparticles,” Coatings, vol. 5, no. 3, July 2015. [Online]. Available: https://doi.org/10.3390/coatings5030465
C. Cárdenas, J. Tobón, C. García, and J. Vila, “Functionalized building materials: Photocatalytic abatement of NOx by cement pastes blended with TiO2 nanoparticles,” Construction and Building Materials, vol. 36, 2012. [Online]. Available: https://doi.org/10.1016/j.conbuildmat.2012.06.017
A. Strini, S. Cassese, and L. Schiavi, “Measurement of benzene, toluene, ethylbenzene and o-xylene gas phase photodegradation by titanium dioxide dispersed in cementitious materials using a mixed flow reactor,” Applied Catalysis B: Environmental, vol. 61, no. 1-2, October 27 2005. [Online]. Available: https://doi.org/10.1016/j.apcatb.2005.04.009
M. Diamanti, B. D. Curto, M. Ormellese, and M. Pedeferri, “Photocatalytic and self-cleaning activity of colored mortars containing tio2,” Construction and Building Materials, vol. 46, September 2013. [Online]. Available: https://doi.org/10.1016/j.conbuildmat.2013.04.038
B. Ruot, A. Plassais, F. Olive, L. Guillot, and L. Bonafous, “TiO2- containing cement pastes and mortars: Measurements of the photocatalytic efficiency using a Rhodamine B-based colourimetric test,” Solar Energy, vol. 83, no. 10, October 2009. [Online]. Available: https://doi.org/10.1016/j.solener.2009.05.017
C. C. Ramirez, J. Tobón, and C. García, “Photocatalytic properties evaluation of Portland white cement added with TiO2- nanoparticles,” Revista Latinoamericana de Metalurgia y Materiales, vol. 33, no. 2, pp. 316–322, Nov. 2013.
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visiblelight photocatalysis in nitrogen-doped titanium oxides,” Science, vol. 293, no. 5528, July 13 2001. [Online]. Available: https://doi.org/10.1126/science.1061051
C. D. Valentin and et al, “N-doped TiO2: “Theory and experiment,” Chemical Physics, vol. 339, no. 1-3, October 15 2007. [Online]. Available: https://doi.org/10.1016/j.chemphys.2007.07.020
M. Kitano, K. Funatsu, M. Matsuoka, M. Ueshima, and M. Anpo, “Preparation of nitrogen-substituted tio2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation,” The journal of Physical chemistry. B., vol. 110, no. 50, December 21 2006. [Online]. Available: https://doi.org/10.1021/jp064893e
Y.Hong, C. Bang, D. Shin, and H. Uhm, “Band gap narrowing of tio2 by nitrogen doping in atmospheric microwave plasma,” Chemical Physics Letters, vol. 413, no. 4-6, September 26 2005. [Online]. Available: https://doi.org/10.1016/j.cplett.2005.08.027
S. Yin and et al, “Synthesis of excellent visible-light responsive tio2−xny photocatalyst by a homogeneous precipitationsolvothermal process,” Journal of Materials Chemistry, vol. 15, November 26 2005. [Online]. Available: https://doi.org/10.1039/B413377C
R. Amadelli, L. Samiolo, M. Borsa, M. Bellardita, and L. Palmisano, “N-TiO2 Photocatalysts highly active under visible irradiation for NOx abatement and 2-propanol oxidation,” Catalysis Today, vol. 206, May 1 2013. [Online]. Available: https://doi.org/10.1016/j.cattod.2011.11.031
M. Janus and et al, “Self-cleaning properties of cement plates loaded with N,C-modified TiO2 photocatalysts,” Applied Surface Science, vol. 330, March 1 2015. [Online]. Available: https://doi.org/10.1016/j.apsusc.2014.12.113
M. Janus and et al, “Cementitious plates containing tio2-n, c photocatalysts for nox degradation,” Journal of Advanced Oxidation Technologies, vol. 18, no. 2, November 30 2016. [Online]. Available: https://doi.org/10.1515/jaots-2015-0207
The maud program. Accessed Nov. 13, 2018. [Online]. Available: https://bit.ly/2XnutP5
N. Day. Departamento de química, Universidad de Cambridge. Accessed Dec. 10, 2012. [Online]. Available: http://www.crystallography.net/cod/
A. Yousefi, A. Allahverdi, and P. Hejazi, “Effective dispersion of nanotio2 powder for enhancement of photocatalytic properties in cement mixes,” Construction and Building Materials, vol. 41, April 2013. [Online]. Available: https://doi.org/10.1016/j.conbuildmat.2012.11.057
Determinazione dell’attività fotocatalitica di leganti idraulici: Metodo della rodammina, UNI:Ente italiano di normazione. Milano, 2008.
Standard Test Method for Compressive Strength of Hydraulic Cement Mortars, ASTM C109 / C109M - 16a, 2011.
F. Billmeyer and M. Saltzman, Principles of Color Technology, 2nd ed. New York, USA: John Wiley & Sons, 1981.
R. Shannon, “Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenide,” Acta Crystallographica, vol. A 32, pp. 751–767, Mar. 1976.
F. Chen, J. Zhao, and H. Hidaka, “Highly selective deethylation of rhodamine b: Adsorption and photooxidation pathways of the dye on the tio2/sio2 composite photocatalyst,” International Journal of Photoenergy, vol. 5, no. 4, 2003. [Online]. Available: http://dx.doi.org/10.1155/S1110662X03000345
G. Colón, S. Murcia, M. Hidalgo, and J. Navío, “Sunlight highly photoactive bi2wo6–tio2 heterostructures for rhodamine b degradation,” Chemical communications, vol. 46, no. 26, July 14 2010. [Online]. Available: http://dx.doi.org/10.1039/c0cc00058b
L. Yang, A. Hakki, F. Wang, and D. Macphee, “Photocatalysis in cement-bonded building materials,” Applied Catalysis B: Environmental, vol. 222, March 2018. [Online]. Available: https://doi.org/10.1016/j.apcatb.2017.10.013
J.Chen, S. Kou, and C. Poon, “Photocatalytic cement-based materials: Comparison of nitrogen oxides and toluene removal potentials and evaluation of self-cleaning performance,” Building and Environment, vol. 46, no. 9, September 2011. [Online]. Available: https://doi.org/10.1016/j.buildenv.2011.03.004
J.Chen, S. Kou, and C. Poon, “Hydration and properties of nano-tio2 blended cement composites,” Cement and Concrete composite, vol. 34, no. 5, May 2012. [Online]. Available: https://doi.org/10.1016/j.cemconcomp.2012.02.009
J. Tobón, O. Restrepo, and J. Payá, “Portland cement blended with nanoparticles,” DYNA, vol. 74, pp. 277–291, Jul. 2007.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Revista Facultad de Ingeniería Universidad de Antioquia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.