Análisis del efecto de ensuciamiento sobre la eficiencia de paneles solares en el Caribe Colombiano
DOI:
https://doi.org/10.17533/udea.redin.20191156Palabras clave:
caracterización de material particulado, disminución en eficiencia de potencia, rendimiento paneles solaresResumen
Este artículo analiza el efecto del material particulado sobre el rendimiento de paneles solares en la Región Caribe Colombiana. Durante el experimento se compara el rendimiento de dos paneles solares identicos sometidos a diferentes escenarios. El objetivo es categorizar y establecer rangos de radiacion solar para estimar su eficiencia comparado con la de 1000 W/m2. El máximo punto de potencia es calculado usando la aproximación de la curva de transferencia I vs V , para luego analizar el impacto de la suciedad a través de un análisis de varianza multifactorial completo (ANOVA) considerando tres factores fundamentales: suciedad/partículas, radiación solar y día. Según los resultados, se estima que el efecto de la suciedad en la eficiencia decae hasta un 6% durante las horas del día con la máxima radiación solar; para radiaciones menores, el impacto en la eficiencia disminuye exponencialmente, lo que implica que la suciedad puede ser insignificante de acuerdo con la potencia disponible. Este estudio revela que el efecto de la suciedad es significativo cuando el panel pasa de limpio a ligeramente sucio, pero este efecto disminuye rápidamente cuando la acumulación cambia de ligera a pesada. Así, se sugiere que una vez el panel tenga suciedad acumulada, los procedimientos de limpieza esperen hasta que la acumulación sea pesada.
Descargas
Citas
A. Sayyah, M. N. Horestein, and M. K. Mazumder, “Energy yield loss caused by dust deposition on photovoltaic panels,” Solar Energy, vol. 107, September 2014. [Online]. Available: https://doi.org/10.1016/j.solener.2014.05.030
M. R. Maghami and et al, “Power loss due to soiling on solar panel: A review,” Renew. and Sustainable Energy Rev., vol. 59, June 2016. [Online]. Available: https://doi.org/10.1016/j.rser.2016.01.044
L. Boyle, H. Flinchpaugh, and M. Hannigan, “Impact of natural soiling on the transmission of PV cover plates,” in 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL, USA, 2013, pp. 3276–3278.
M. Vivar and et al, “Effect of soiling in CPV systems,” Solar Energy, vol. 84, no. 7, July 2010. [Online]. Available: https://doi.org/10.1016/j.solener.2010.03.031
L. Zhou and et al, “The impact of air pollutant deposition on solar energy system efficiency: An approach to estimate PV soiling effects with the community multiscale air quality (CMAQ) model,” Science of the Total Environment, vol. 651, February 15 2019. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2018.09.194
J. J. John, S. Warade, A. Kumar, and A. Kottantharayil, “Evaluation and prediction of soiling loss on PV modules with artificially deposited dust,” in 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 2015, pp. 1–3.
M. Naeem and G. TamizhMani, “Cleaning frequency optimization for soiled photovoltaic modules,” in 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 2015, pp. 1–5.
R. Appels and et al, “Effect of soiling on photovoltaic modules,” Solar Energy, vol. 96, October 2013. [Online]. Available: https://doi.org/10.1016/j.solener.2013.07.017
M. Mani and R. Pillai, “Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations,” Renew. and Sustainable Energy Rev., vol. 14, no. 9, December 2010. [Online]. Available: https://doi.org/10.1016/j.rser.2010.07.065
P. D. Burton and B. H. King, “Application and characterization of an artificial grime for photovoltaic soiling studies,” IEEE J. Photovolt., vol. 4, no. 1, January 2014. [Online]. Available: https://doi.org/10.1109/JPHOTOV.2013.2270343
J. W. Zapata, M. A. Perez, and S. Kouro, “Design of a cleaning program for a PV plant based on the analysis of short-term and longterm effects,” in 41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 2015, pp. 1301–1306.
W. Herrmann, M. Schweiger, G. Tamizhmani, B. Shisler, and C. S. Kamalaksha, “Soiling and self-cleaning of PV modules under the weather conditions of two locations in Arizona and South-East India,” in 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 2015, pp. 1–5.
J. J. John, S. Tatapudi, and G. Tamizhmani, “Influence of soiling layer on quantum efficiency and spectral reflectance on crystalline silicon PV modules,” in 40th IEEE Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 2014, pp. 2595–2599.
A. Alshehri and et al, “Dust mitigation in the desert: Cleaning mechanisms for solar panels in arid regions,” in Saudi Arabia Smart Grid Conference (SASG), Jeddah, Saudi Arabia, 2014, pp. 1–6.
Manual de Normas de Ensayo de Materiales para Carreteras, Instituto Nacional de Vias, Bogotá, Colombia.
J. J. John, S. Warade, G. Tamizhmani, and A. Kottantharayil, “Study of soiling loss on photovoltaic modules with artificially deposited dust of different gravimetric densities and compositions collected from different locations in india,” IEEE J. Photovolt., vol. 6, no. 1, January 2016. [Online]. Available: https://doi.org/10.1109/JPHOTOV.2015.2495208
S. Boppana, V. Rajasekar, and G. TamizhMani, “Working towards the development of a standardized artificial soiling method,” in 42nd IEEE Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 2015, pp. 1–6.
M. Gostein, T. Düster, and C. Thuman, “Accurately measuring PV soiling losses with soiling station employing module power measurements,” in 42nd IEEE Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 2015, pp. 1–4.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Revista Facultad de Ingeniería Universidad de Antioquia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.