Predicción de la producción de residuos con incertidumbre en la ciudad inteligente mediante neuroevolución profunda
DOI:
https://doi.org/10.17533/udea.redin.20190736Palabras clave:
neuroevolución profunda, aprendizaje profundo, algoritmos evolutivos, ciudad inteligente, gestión de residuosResumen
El desarrollo insostenible de los países ha creado un problema debido a la imparable generación de residuos. Más aún, la recogida de residuos se realiza siguiendo una ruta predefinida que no tiene en cuenta el nivel real de los contenedores recogidos. Por lo tanto, optimizar la forma en que se recolectan los residuos presenta una oportunidad interesante. En este estudio, abordamos el problema de predecir la tasa de generación de residuos en condiciones reales, es decir, bajo incertidumbre. En particular, utilizamos una técnica neuroevolutiva profunda para diseñar automáticamente una red recurrente que encapsula el nivel de llenado de todos los contenedores de residuos en una ciudad a la vez, y estudiamos la idoneidad de nuestra propuesta cuando nos enfrentamos a datos ruidosos y defectuosos. Validamos nuestra propuesta utilizando un caso real, que consta de más de doscientos contenedores de residuos ubicados en una ciudad de España, y comparamos nuestros resultados con el estado del arte. Los resultados muestran que nuestra propuesta supera a todos sus competidores y que su precisión en un escenario del mundo real, es decir, bajo datos inciertos, es lo suficientemente buena para optimizar la planificación de la recolección de residuos.
Descargas
Citas
T. Bakici, E. Almirall, and J. Wareham, “A smart city initiative: the case of barcelona,” Journal of the Knowledge Economy , vol. 4, no. 2, pp. 135–148, 2013.
P. Ghisellini, C. Cialani, and S. Ulgiati, “A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems,” Journal of Cleaner Production , vol. 114, pp. 11–32, 2016.
A. Tukker, “Product services for a resource-efficient and circular economy - a review,” Journal of Cleaner Production , vol. 97, pp. 76–91, 2015.
J. Teixeira, A. P. Antunes, and J. P. de Sousa, “Recyclable waste collection planning––a case study,” European Journal of Operational Research , vol. 158, no. 3, pp. 543–554, nov 2004.
V. K. Ojha, A. Abraham, and V. Snášel, “Metaheuristic design of feedforward neural networks: A review of two decades of research,” Engineering Applications of Artificial Intelligence , vol. 60, pp. 97 – 116, 2017.
T. Back, Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms . Oxford university press, 1995.
J. Ferrer, J. García, E. Alba, and F. Chicano, “Intelligent testing of traffic light programs: Validation in smart mobility scenarios,” Mathematical Problems in Engineering , vol. 2016, pp. 1–19, 2016. [Online]. Available: http://www.hindawi.com/journals/mpe/2016/3871046/
J. García, J. Ferrer, and E. Alba, “Optimising traffic lights with metaheuristics: Reduction of car emissions and consumption,” in International Joint Conference on Neural Networks , 2014, pp. 48–54.
R. Massobrio, J. Toutouh, S. Nesmachnow, and E. Alba, “Infrastructure deployment in vehicular communication networks using a parallel multiobjective evolutionary algorithm,” International Journal of Intelligent Systems , vol. 32, no. 8, pp. 801–829, 2017.
S. Nesmachnow, D. Rossit, and J. Toutouth, “Comparison of multiobjective evolutionary algorithms for prioritized urban waste collection in montevideo, uruguay,” Electronic Notes in Discrete Mathematics , 2018.
J. Toutouh, D. Rossit, and S. Nesmachnow, “Computational intelligence for locating garbage accumulation points in urban scenarios,” in International Conference on Learning and Intelligent Optimization, LION 12 , 2018, pp. 1–15.
D. G. Rossit, S. Nesmachnow, and J. Toutouh, “Municipal solid waste management in smart cities: facility location of community bins,” in Congreso Iberoamericano de Ciudades Inteligentes (ICSC-CITIES2018) , 2018, pp. 1–14.
A. Camero, J. Arellano, and E. Alba, “Road map partitioning for routing by using a micro steady state evolutionary algorithm,” Engineering Applications of Artificial Intelligence , vol. 71, pp. 155–165, 2018.
A. Camero, J. Toutouh, D. H. Stolfi, and E. Alba, “Evolutionary deep learning for car park occupancy prediction in smart cities,” in Learning and Intelligent OptimizatioN Conference LION , 2018.
Y. Jin and J. Branke, “Evolutionary optimization in uncertain environments,” IEEETransactionsonEvolutionaryComputation , vol. 9, no. 5, pp. 303–317, 2005.
A. Camero, J. Toutouh, J. Ferrer, and E. Alba, “Waste generation prediction in smart cities through deep neuroevolution,” in Smart Cities. ICSC-CITIES 2018 , vol. 978, 2019, pp. 192–204.
J. Ferrer and E. Alba, “(bin-ct): Urban waste collection based in predicting the container fill level,” jul 2018. [Online]. Available: http://arxiv.org/abs/1807.01603
B. J. Garvin, M. Cohen, and M. B. Dwyer, “Evaluating improvements to a meta-heuristic search for constrained interaction testing,” Empirical Software Engineering , vol. 16, no. 1, pp. 61–102, 2011.
S. Sahoo, S. Kim, B. I. Kim, B. Kraas, and A. Popov Jr., “Routing optimization for waste management,” Interfaces , vol. 35, no. 1, pp. 24–36, 2005.
L. Q. Dat, D. T. Truc, S. Y. Chou, and V. F. Yu, “Optimizing reverse logistic costs for recycling end-of-life electrical and electronic products,” Expert Systems with Applications , vol. 39, no. 7, pp. 6380–6387, 2012.
A. Z. Alagöz and G. Kocasoy, “Improvement and modification of the routing system for the health-care waste collection and transportation in istanbul,” Waste Management , vol. 28, no. 8, pp. 1461–1471, 2008.
J. Beliën, L. De Boeck, and J. Van Ackere, “Municipal solid waste collection and management problems: A literature review,” Transportation Science , vol. 48, no. 1, pp. 78–102, feb 2014.
L. Xu, P. Gao, S. Cui, and C. Liu, “A hybrid procedure for msw generation forecasting at multiple time scales in xiamen city, china,” Waste management , vol. 33, no. 6, pp. 1324–31, jun 2013.
C. Cole, M. Quddus, A. Wheatley, M. Osmani, and K. Kay, “The impact of local authorities’ interventions on household waste collection: a case study approach using time series modelling,” Waste management , vol. 34, no. 2, pp. 266–72, feb 2014.
D. V. Tung and A. Pinnoi, “Vehicle routing-scheduling for waste collection in hanoi,” European Journal of Operational Research , vol. 125, no. 3, pp. 449–468, 2000.
J. Sniezek and L. Bodin, “Using mixed integer programming for solving the capacitated arc routing problem with vehicle/site dependencies with an application to the routing of residential sanitation collection vehicles,” Annals of Operations Research , vol. 144, no. 1, pp. 33–58, apr 2006.
L. Bodin, A. Mingozzi, R. Baldacci, and M. Ball, “The rollon–rolloff vehicle routing problem,” Transportation Science , vol. 34, no. 3, pp. 271–288, 2000.
J. Ferrer and E. Alba, “Bin-ct: sistema inteligente para la gestión de la recogida de residuos urbanos,” in International Greencities Congress , 2018, pp. 117–128.
Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature , vol. 521, no. 7553, p. 436, 2015.
S. Haykin, Neural networks and learning machines . Pearson, 2009, vol. 3.
D. Rumelhart, G. E. Hinton, and R. j. Williams, “Learning internal representations by error propagation,” California Univ San Diego La Jolla Inst for Cognitive Science, Tech. Rep. No. ICS-8506, 1985.
H. Jaeger, Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the echo state network approach . GMD, 2002, vol. 5.
R. Reed, R. Marks, and S. Oh, “Similarities of error regularization, sigmoid gain scaling, target smoothing, and training with jitter,” IEEE Transactions on Neural Networks , vol. 6, no. 3, pp. 529–538, 1995.
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,” The Journal of Machine Learning Research , vol. 15, no. 1, pp. 1929–1958, 2014.
J. Bergstra, D. Yamins, and D. Cox, “Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures,” in International Conference on Machine Learning , 2013, pp. 115–123.
R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration of recurrent network architectures,” in International Conference on Machine Learning , 2015, pp. 2342–2350.
E. Alba and R. Martí, Metaheuristic Procedures for Training Neural Networks . Springer Science & Business Media, 2006.
X. Yao, “Evolving artificial neural networks,” Proceedings of the IEEE , vol. 87, no. 9, pp. 1423–1447, 1999.
R. Miikkulainen and et al ., “Evolving deep neural networks,” arXiv preprint arXiv:1703.00548 , 2017. [Online]. Available: http://arxiv.org/abs/1703.00548
G. Morse and K. O. Stanley, “Simple evolutionary optimization can rival stochastic gradient descent in neural networks,” in Proc. of the Genetic and Evolutionary Computation Conf. 2016, 2016, pp. 477–484.
X. Su, X. Yan, and C. L. Tsai, “Linear regression,” Wiley Interdisciplinary Reviews: Computational Statistics , vol. 4, no. 3, pp. 275–294, 2012.
D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980 , 2014.
C. Doerr, “Non-static parameter choices in evolutionary computation,” in Genetic and Evolutionary Computation Conference Companion , 2017.
A. Camero, J. Toutouh, and E. Alba, “(dlopt): Deep learning optimization library,” arXiv preprint arXiv:1807.03523 , july 2018.
F. Chollet and et al , “Keras,” https://keras.io, 2015.
M. Abadi and et al ., “Tensorflow: A system for large-scale machine learning,” in 12 th (USENIX) Symposium on Operating Systems Design and Implementation (OSDI 16) , 2016, pp. 265–283.
A. Camero, J. Toutouh, and E. Alba, “Comparing deep recurrent networks based on the mae random sampling, a first approach,” in Conference of the Spanish Association for Artificial Intelligence (CAEPIA) 2018 , 2018, pp. 1–10.
A. Camero, J. Toutouh, and E. Alba, “Low-cost recurrent neural network expected performance evaluation,” arXiv preprint arXiv:1805.07159 , may 2018.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2019 Revista Facultad de Ingeniería Universidad de Antioquia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.