Selection of inocula conditioning methodologies for the anaerobic digestion of food waste

Keywords: Biogas, Methane, Multicriteria analysis, Solid waste, Technological surveillance

Abstract

Food waste (FW) has a high potential for use in biological processes such as anaerobic digestion (AD), especially due to its high content of biodegradable organic matter. To inoculate the reactors, sludge is usually used. The sludge should ideally have good sedimentation and specific methanogenic activity (SMA), which is typical for granular sludge. However, in a Latin American context, the most available and accessible sludges are flocculants with low sedimentation and SMA. Applying technological surveillance between 1975 and 2017, using multicriteria analysis techniques such as analytical hierarchy process (AHP), and consulting with international and national experts, we observed that there were few studies, compared to published studies on the substrates that focused on improving inoculum quality through conditioning to improve its characteristics and maximize methane production. The inoculum-conditioning methodologies identified were grouped into five categories, being the main strategy the addition of nutrients followed by anaerobic digestion with an easily degradable substrate. However, extension of technological surveillance is recommended by incorporating the results published from significant events in the field of anaerobic digestion, such as the Latin American Workshop and Symposium on Anaerobic Digestion and the World Congress on Anaerobic Digestion.

|Abstract
= 220 veces | PDF
= 160 veces|

Downloads

Download data is not yet available.

Author Biographies

Brayan Alexis Parra-Orobio, University of Valle

Research Group Study and Control of Environmental Pollution - ECCA, Faculty of Engineering.

Melkin Nieto-Mendoza, University of Valle

Sanitary and Environmental Engineer. Research Group Study and Control of Environmental Pollution - ECCA, Faculty of Engineering.

Diego Rivera-Henao, University of Valle

Sanitary and Environmental Engineer. Research Group Study and Control of Environmental Pollution. - ECCA, Faculty of Engineering.

Pablo Cesar Manyoma-Velásquez, University of Valle

Industrial Engineer, Master and PhD. in Engineering. Associate professor. Logistics and Production Research Group - LOGYPRO, Faculty of Engineering.

Patricia Torres-Lozada, University of Valle

Sanitary Engineer, Master and PhD. in Hydraulics and Sanitation. Titular Professor. Logistics and Production Research Group - LOGYPRO, Faculty of Engineering.

References

A. P. Trzcinski and D. C. Stuckey, “Determination of the hydrolysis constant in the biochemical methane potential test of municipal solid waste,” Environmental Engineering Science, vol. 29, no. 9, pp. 848–54, 2012.

L. A. Fdéz., C. Álvarez, D. Sales, and L. I. Romero, “Start-up of thermophilic–dry anaerobic digestion of ofmsw using adapted modified sebac inoculum,” Bioresource Technology, vol. 101, no. 23, pp. 9031–9039, Dec. 2010.

Elbeshbishy, G. Nakhlaa, and H. Hafez, “Biochemical methane potential (bmp) of food waste and primary sludge: Influence of inoculum pre-incubation and inoculum source,” Bioresource Technology, vol. 110, pp. 18–25, Apr. 2012.

C. Lavergne, D. Jeison, V. Ortega, R. Chamy, and A. Donoso, “A need for a standardization in anaerobic digestion experiments? let’s get some insight from meta-analysis and multivariate analysis.” Journal of Environmental Management, vol. 15, no. 222, pp. 141–147, Sep. 2018.

N. Qamaruz and M. W. Milke. (2008) Digested sewage sludge as seed for batch test of anaerobic biodegradability. [Online]. Available: https://core.ac.uk/download/pdf/35459994.pdf

M. Fernández, A. Abalos, S. Crombet, and H. Caballero, “Ensayos de biodegradabilidad anaerobia de aguas residuales generadas en una planta refinadora de aceite de soja,” Interciencia, vol. 35, no. 8, pp. 600–604, Aug. 2010.

J. D. Nixon, P. K. Dey, S. K. Ghosh, and P. A. Davies, “Evaluation of options for energy recovery from municipal solid waste in india using the hierarchical analytical network process,” Energy, vol. 59, pp. 215–223, Sep. 2013.

P. Manyoma, M. Pardo, and P. Torres, “Localización de depósitos internos para residuos sólidos hospitalarios utilizando técnicas multicriterio,” Ingeniería y Universidad, vol. 17, no. 2, pp. 443–61, Jul. 2013.

A. Khoshand, H. Kamalan, and H. Rezaei, “Application of analytical hierarchy process (ahp) to assess options of energy recovery from municipal solid waste: a case study in tehran, iran,” Journal of Material Cycles and Waste Management, vol. 20, no. 3, pp. 1689–1700, Jul. 2018.

V. V. Lomakin, N. P. Putivtseva, T. V. Zaitseva, M. V. Liferenko, and I. M. Zaitsev, “Multi-critera selection of a corporate system by using paired comparison analysis,” J. Fundam. Appl. Sci., vol. 9, no. 7s, pp. 1472–1482, Mar. 2017.

I. B. Huang, J. Keisler, and I. Linkov, “Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends,” Science of The Total Environment, vol. 409, no. 19, pp. 3578–3594, Sep. 2011.

E. Gómez, D. F. Navas, G. Aponte, and L. A. Betancourt, “Metodología para la revisión bibliográfica y la gestión de información de temas científicos, a través de su estructuración y sistematización,” Dyna, vol. 81, no. 184, pp. 158–163, 2014.

J. Soto, R. Oviedo, P. Torres, L. F. Marmolejo, and P. C. Manyoma, “Compostaje de biorresiduos: Tendencias de investigación y pertinencia en países en desarrollo,” Dyna, vol. 84, no. 203, pp. 334–342, 2017.

(2017) Elsevier. productos: Scopus 2017. Elsevier. Accessed En. 10, 2018. [Online]. Available: https://www.scopus.com/search/form.uri?display=basic.

A. Ishizaka and A. Labib, “Review of the main developments in the analytic hierarchy process,” Expert Systems with Applications, vol. 38, no. 11, pp. 14 336–14 345, 2011.

N. Subramanian and R. Ramanathan, “A review of applications of analytic hierarchy process in operations management,” International Journal of Production Economics, vol. 138, no. 2, pp. 215–241, Aug. 2012.

F. Zahedi, “The analytic hierarchy process: A survey of the method and its applications,” Interfaces, vol. 16, no. 4, pp. 96–108, Jul. 1986.

D. Podgórski, “Measuring operational performance of osh management system – a demonstration of ahp-based selection of leading key performance indicators,” Safety Science, vol. 73, pp. 146–166, Mar. 2015.

J. Fernández, “Optimización de la digestión anaerobia seca de la fracción orgánica de los residuos sólidos urbanos (forsu) en reactores en fases de temperatura,” M.S. thesis, Universidad de Cádiz, España, 2010.

B. Wang, S. Strömberg, I. A. Nges, M. Nistor, and J. Liu, “Impacts of inoculum pre-treatments on enzyme activity and biochemical methane potential,” J. Biosci. Bioeng., vol. 121, no. 5, pp. 557–60, May 2016.

F. M. Espinoza and et al., “Optimizacion multiple del proceso de digestion anaerobia de vinazas tequileras a temperatura termofílica para la disminucion de la dqo y la generacion de metano,” Boletin Nakari, vol. 18, no. 3, pp. 83–8, 2007.

W. Charles, L. Walker, and R. Cord, “Effect of pre-aeration and inoculum on the start-up of batch thermophilic anaerobic digestion of municipal solid waste,” Bioresour Technol., vol. 100, no. 8, pp. 2329– 35, Apr. 2009.

G. Silvestre, A. Rodríguez, B. Fernández, X. Flotats, and A. Bonmatí, “Biomass adaptation over anaerobic co-digestion of sewage sludge and trapped grease waste,” Bioresour Technol., vol. 102, no. 13, pp. 6830–6, Jul. 2011.

W. A. Mosos, L. S. Cadavid, and A. C. Agudelo, “Potencial de biogás de residuos de frutas y verduras provenientes de restaurantes de palmira,” Acta Agron., vol. 61, no. 5, pp. 97–98, 2012.

Y. Li and et al., “Influence of inoculum source and pre-incubation on bio-methane potential of chicken manure and corn stover.” Appl. Biochem. Biotechnol., vol. 171, no. 1, pp. 117–27, Sep. 2013.

Z. Sapci, J. Morken, and R. Linjordet, “An investigation of the enhancement of biogas yields from lignocellulosic material using two pretreatment methods: Microwave irradiation and steam explosion,” BioResources, vol. 8, no. 2, pp. 1976–85, 2013.

P. Ferrer, M. Cambra, A. Cerisuelo, D. S.Peñaranda, and V. Moset, “The use of agricultural substrates to improve methane yield in anaerobic co-digestion with pig slurry: Effect of substrate type and inclusion level,” Waste Management, vol. 34, no. 1, pp. 196–203, Jan. 2014.

J. Shi and et al., “Effects of microbial and non-microbial factors of liquid anaerobic digestion effluent as inoculum on solid-state anaerobic digestion of corn stover,” Bioresource Technology, vol. 157, pp. 188–196, Apr. 2014.

G. Wordofa, “Effect of thermal pretreatment on chemical composition and biogas production from kitchen waste,” M.S. thesis, University of Jyväskylä, Jyväskylä, Finlandia, 2014.

X. Liu, S. M. Zicari, G. Liu, Y. Li, and R. Zhang, “Pretreatment of wheat straw with potassium hydroxide for increasing enzymatic and microbial degradability,” Bioresource Technology, vol. 185, pp. 150–157, Jun. 2015.

G. Silvestre, A. Bonmatí, and B. Fernández, “Optimisation of sewage sludge anaerobic digestion through co-digestion with ofmsw: Effect of collection system and particle size,” Waste Management, vol. 43, pp. 137–143, Sep. 2015.

G. Zhen, X. Lu, T. Kobayashi, Y.-Y. Li, K. Xu, and Y. Zhao, “Mesophilic anaerobic co-digestion of waste activated sludge and egeria densa: Performance assessment and kinetic analysis,” Applied Energy, vol. 148, pp. 78–86, Jun. 2015.

L. S. Cadavid and I. V. Bolaños, “Grass from public green spaces an alternative source of renewable energy in tropical countries,” Revista ION, vol. 29, no. 1, pp. 109–16, Jan. 2016.

P. Tsapekos, P. G. Kougias, A. Frison, R. Raga, and L. Angelidaki, “Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment,” Bioresour. Technol., vol. 216, pp. 545–52, Sep. 2016.

Z. Jian, W. Shuangfei, L. Shiguang, X. Ping, and X. Tian, “Kinetics of combined thermal pretreatment and anaerobic digestion of waste activated sludge from sugar and pulp industry,” Chemical Engineering Journal, vol. 295, pp. 131–138, Jul. 2016.

N. Nakasima and et al., “Inoculum adaptation during start-up of anaerobic digestion of organic solid waste,” Inf. tecnol., vol. 28, no. 1, pp. 199–208, 2017.

R. E. Salazar, “Influencia en la adición de un coagulante en el mejoramiento de la calidad de un inóculo para optimizar el arranque de un reactor UASB,” Undergraduate thesis, Facultad de Ingenieria, Universidad del Valle, Cali, Colombia, 2001.

P. Torres, A. Cardoso, and O. Rojas, “Mejoramiento de la calidad de lodos anaerobios. influencia de la adición de cloruro férrico,” Ingeniería y Competitividad, vol. 5, no. 2, pp. 23–31, 2004.

W. Choorit and P. Wisarnwan, “Effect of temperature on the anaerobic digestion of palm oil mill effluent,” Electronic Journal of Biotechnology, vol. 10, no. 3, pp. 376–85, Jul. 2007.

P. Lins, C. Reitschuler, and P. Illmer, “Development and evaluation of inocula combating high acetate concentrations during the startup of an anaerobic digestion,” Bioresource Technology, vol. 110, pp. 167–173, Apr. 2012.

I. Cabeza, V. Thomas, A. Vásquez, P. Acevedo, and M. Hernández, “Anaerobic co-digestion of organic residues from different productive sectors in colombia: Biomethanation potential assessment,” Chemical Engineering Transactions, vol. 49, pp. 385–90, 2016.

W. Suksong, P. Kongjan, P. Prasertsan, T. Imai, and S. O-Thong, “Optimization and microbial community analysis for production of biogas from solid waste residues of palm oil mill industry by solid-state anaerobic digestion,” Bioresource Technology, vol. 214, pp. 166–174, Aug. 2016.

M. Wojcieszak and et al., “Adaptation of methanogenic inocula to anaerobic digestion of maize silage,” Frontiers in Microbiology, vol. 8, 2017.

Q. Yang, L. H. Wei, W. Li, Y. Chen, and M. T. Ju, “Effects of feedstock sources on inoculant acclimatization: Start-up strategies and reactor performance,” Appl. Biochem. Biotechnol., vol. 183, no. 3, pp. 729–743, Nov. 2017.

A. G. Vlyssides and P. K. Karlis, “Thermal-alkaline solubilization of waste activated sludge as a pre-treatment stage for anaerobic digestion,” Bioresource Technology, vol. 91, no. 2, pp. 201–206, Jan. 2004.

S. E. Vigueras, F. Ramírez, A. Noyola, and O. Monroy, “Effect of thermal alkaline pretreatment on the anaerobic digestion of wasted activated sludge,” Revista mexicana de ingeniería química, vol. 10, no. 2, pp. 247–255, Aug. 2011.

M. Collazos, J. Valencia, J. Rodríguez, and O. Rojas, “Influencia del proceso de elutriación en el mejoramiento de un inóculo de mala calida para optimizar el arranque de un reactor uasb,” unpublished.

J. Shi, Z. Wang, J. A. Stiverson, Z. Yu, and Y. Li, “Reactor performance and microbial community dynamics during solid-state anaerobic digestion of corn stover at mesophilic and thermophilic conditions,” Bioresour Technol., vol. 136, pp. 574–81, May 2013.

I. Angelidaki and et al., “Defining the biomethane potential (bmp) of solid organic wastes and energy crops: a proposed protocol for batch assays.” Water. Sci. Technol., vol. 59, no. 5, pp. 927–34, 2009.

F. Raposo, M. A. D. la Rubia, V. Fernández, and R. Borja, “Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures,” Renewable and Sustainable Energy Reviews, vol. 16, no. 1, pp. 861–877, Jan. 2012.

B. A. Parra, L. S. Angulo, J. S. Loaiza, W. A. Torres, and P. Torres, “Inoculum mixture optimization as strategy for to improve the anaerobic digestion of food waste for the methane production,” Journal of Environmental Chemical Engineering, vol. 6, no. 1, pp. 1529–1535, Feb. 2018.

P. Torres, S. J. Granados, and B. A. Orobio, “Effects of the incorporation of drinking water sludge on the anaerobic digestion of domestic wastewater sludge for methane production,” Water Sci. Technol., vol. 72, no. 6, pp. 1016–21, 2015.

M. Romero, J. Vila, J. Mata, J. M. Chimenos, and S. Astals, “The role of additives on anaerobic digestion: A review,” Renewable and Sustainable Energy Reviews, vol. 58, pp. 1486–1499, May 2016.

E. Ortega-Martinez, I. Sapkaite, F. Fdz-Polanco, and A. Donoso- Bravo, “From pre-treatment toward inter-treatment. getting some clues from sewage sludge biomethanation,” Bioresource Technology, vol. 212, pp. 227 – 235, Jul. 2016.

J. Ariunbaatar, A. Panico, G. Esposito, F. Pirozzi, and P. N. Lens, “Pretreatment methods to enhance anaerobic digestion of organic solid waste,” Applied Energy, vol. 123, pp. 143–156, Jun. 2014.

W. M. Budzianowski, “A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment,” Renewable and Sustainable Energy Reviews, vol. 54, pp. 1148–1171, Feb. 2016.

Z. Naji and et al., “Batch anaerobic co-digestion of ofmsw (organic fraction of municipal solid waste), twas (thickened waste activated sludge) and rs (rice straw): Influence of twas and rs pretreatment and mixing ratio,” Energy, vol. 107, pp. 131–140, Jul. 2016.

A. J. Ward, P. J. Hobbs, P. J. Holliman, and D. L. Jones, “Optimisation of the anaerobic digestion of agricultural resources,” Bioresource Technology, vol. 99, no. 17, pp. 7928–7940, Nov. 2008.

B. A. Parra and et al., “EvaluaciÃde lodos de PTAR municipales como inÃen la digestiÃanaerobia de biorresiduos,” Revista ION, vol. 29, pp. 37–46, jun 2016.

C. Holliger and et al., “Towards a standardization of biomethane potential tests,” Water Sci. Technol., vol. 74, no. 11, pp. 2515–2522, Dec. 2016.

G. Capson-Tojo, C. Girard, M. Rouez, M. Crest, J.-P. Steyer, N. Bernet, J.-P. Delgenès, and R. Escudié, “Addition of biochar and trace elements in the form of industrial fecl3 to stabilize anaerobic digestion of food waste: dosage optimization and long-term study,” Journal of Chemical Technology & Biotechnology, vol. 94, no. 2, pp. 505– 515, 2019.

Published
2019-05-08
How to Cite
Parra-Orobio B. A., Nieto-Mendoza M., Rivera-Henao D., Manyoma-Velásquez P. C., & Torres-Lozada P. (2019). Selection of inocula conditioning methodologies for the anaerobic digestion of food waste. Revista Facultad De Ingeniería Universidad De Antioquia, (92), 9-18. https://doi.org/10.17533/udea.redin.20190510