Selección de metodologías de acondicionamiento de inóculos para la digestión anaerobia de residuos de alimentos

Autores/as

  • Brayan Alexis Parra-Orobio Universidad del Valle
  • Melkin Nieto-Mendoza Universidad del Valle
  • Diego Rivera-Henao Universidad del Valle
  • Pablo Cesar Manyoma-Velásquez Universidad del Valle
  • Patricia Torres-Lozada Universidad del Valle

DOI:

https://doi.org/10.17533/udea.redin.20190510

Palabras clave:

biogás, metano, análisis multicriterio, residuos sólidos, vigilancia tecnológica

Resumen

Los residuos de alimentos (RA) presentan un alto potencial de aprovechamiento mediante procesos biológicos como la digestión anaerobia (DA), especialmente por su alto contenido de materia orgánica biodegradable. Para inocular los reactores, en general se emplean lodos que deben presentar buena sedimentabilidad y actividad metanogénica específica (AME), típico en lodos granulares. Sin embargo, los de mayor disponibilidad y accesibilidad en el contexto latinoamericano, son lodos floculentos de baja sedimentabilidad y AME. Aplicando vigilancia tecnológica desde 1975 hasta 2017, se evidenció escasa literatura enfocada a mejorar la calidad del inóculo mediante acondicionamientos para mejorar sus características y maximizar la producción de metano, en comparación con los estudios publicados sobre el sustrato. Se identificaron diferentes metodologías de acondicionamiento de inóculos, las cuales se agruparon en cinco categorías y mediante la aplicación de técnicas de análisis multicriterio como el proceso de análisis jerárquico (AHP) y con consulta a expertos internacionales y nacionales. Se identificaron las técnicas más utilizadas, siendo las principales, la adición de nutrientes seguida por la digestión anaerobia con un sustrato de fácil degradación. Sin embargo, se recomienda complementar la vigilancia tecnológica, incorporando los resultados publicados en eventos de gran importancia en el campo de la DA como el Seminario-Taller latinoamericano y el Congreso Mundial de Digestión Anaerobia.

|Resumen
= 573 veces | PDF (ENGLISH)
= 324 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Brayan Alexis Parra-Orobio, Universidad del Valle

Grupo de Investigación Estudio y Control de la Contaminación Ambiental - ECCA, Facultad de Ingeniería.

Melkin Nieto-Mendoza, Universidad del Valle

Ingeniero Sanitario y Ambiental. Grupo de Investigación Estudio y Control de la Contaminación Ambiental - ECCA, Facultad de Ingeniería.

Diego Rivera-Henao, Universidad del Valle

Ingeniero Sanitario y Ambiental. Grupo de Investigación Estudio y Control de la Contaminación Ambiental - ECCA, Facultad de Ingeniería.

Pablo Cesar Manyoma-Velásquez, Universidad del Valle

Ingeniero Industrial, Magíster y Doctor en Ingeniería. Profesor Asociado. Grupo de Investigación Logística y producción - LOGYPRO, Facultad de Ingeniería.

Patricia Torres-Lozada, Universidad del Valle

Ingeniera Sanitaria, Magíster y Doctora en Hidrálica y Saneamiento. Profesora Titular. Grupo de Investigación Logística y producción - LOGYPRO, Facultad de Ingeniería.

Citas

A. P. Trzcinski and D. C. Stuckey, “Determination of the hydrolysis constant in the biochemical methane potential test of municipal solid waste,” Environmental Engineering Science, vol. 29, no. 9, pp. 848–54, 2012.

L. A. Fdéz., C. Álvarez, D. Sales, and L. I. Romero, “Start-up of thermophilic–dry anaerobic digestion of ofmsw using adapted modified sebac inoculum,” Bioresource Technology, vol. 101, no. 23, pp. 9031–9039, Dec. 2010.

Elbeshbishy, G. Nakhlaa, and H. Hafez, “Biochemical methane potential (bmp) of food waste and primary sludge: Influence of inoculum pre-incubation and inoculum source,” Bioresource Technology, vol. 110, pp. 18–25, Apr. 2012.

C. Lavergne, D. Jeison, V. Ortega, R. Chamy, and A. Donoso, “A need for a standardization in anaerobic digestion experiments? let’s get some insight from meta-analysis and multivariate analysis.” Journal of Environmental Management, vol. 15, no. 222, pp. 141–147, Sep. 2018.

N. Qamaruz and M. W. Milke. (2008) Digested sewage sludge as seed for batch test of anaerobic biodegradability. [Online]. Available: https://core.ac.uk/download/pdf/35459994.pdf

M. Fernández, A. Abalos, S. Crombet, and H. Caballero, “Ensayos de biodegradabilidad anaerobia de aguas residuales generadas en una planta refinadora de aceite de soja,” Interciencia, vol. 35, no. 8, pp. 600–604, Aug. 2010.

J. D. Nixon, P. K. Dey, S. K. Ghosh, and P. A. Davies, “Evaluation of options for energy recovery from municipal solid waste in india using the hierarchical analytical network process,” Energy, vol. 59, pp. 215–223, Sep. 2013.

P. Manyoma, M. Pardo, and P. Torres, “Localización de depósitos internos para residuos sólidos hospitalarios utilizando técnicas multicriterio,” Ingeniería y Universidad, vol. 17, no. 2, pp. 443–61, Jul. 2013.

A. Khoshand, H. Kamalan, and H. Rezaei, “Application of analytical hierarchy process (ahp) to assess options of energy recovery from municipal solid waste: a case study in tehran, iran,” Journal of Material Cycles and Waste Management, vol. 20, no. 3, pp. 1689–1700, Jul. 2018.

V. V. Lomakin, N. P. Putivtseva, T. V. Zaitseva, M. V. Liferenko, and I. M. Zaitsev, “Multi-critera selection of a corporate system by using paired comparison analysis,” J. Fundam. Appl. Sci., vol. 9, no. 7s, pp. 1472–1482, Mar. 2017.

I. B. Huang, J. Keisler, and I. Linkov, “Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends,” Science of The Total Environment, vol. 409, no. 19, pp. 3578–3594, Sep. 2011.

E. Gómez, D. F. Navas, G. Aponte, and L. A. Betancourt, “Metodología para la revisión bibliográfica y la gestión de información de temas científicos, a través de su estructuración y sistematización,” Dyna, vol. 81, no. 184, pp. 158–163, 2014.

J. Soto, R. Oviedo, P. Torres, L. F. Marmolejo, and P. C. Manyoma, “Compostaje de biorresiduos: Tendencias de investigación y pertinencia en países en desarrollo,” Dyna, vol. 84, no. 203, pp. 334–342, 2017.

(2017) Elsevier. productos: Scopus 2017. Elsevier. Accessed En. 10, 2018. [Online]. Available: https://www.scopus.com/search/form.uri?display=basic.

A. Ishizaka and A. Labib, “Review of the main developments in the analytic hierarchy process,” Expert Systems with Applications, vol. 38, no. 11, pp. 14 336–14 345, 2011.

N. Subramanian and R. Ramanathan, “A review of applications of analytic hierarchy process in operations management,” International Journal of Production Economics, vol. 138, no. 2, pp. 215–241, Aug. 2012.

F. Zahedi, “The analytic hierarchy process: A survey of the method and its applications,” Interfaces, vol. 16, no. 4, pp. 96–108, Jul. 1986.

D. Podgórski, “Measuring operational performance of osh management system – a demonstration of ahp-based selection of leading key performance indicators,” Safety Science, vol. 73, pp. 146–166, Mar. 2015.

J. Fernández, “Optimización de la digestión anaerobia seca de la fracción orgánica de los residuos sólidos urbanos (forsu) en reactores en fases de temperatura,” M.S. thesis, Universidad de Cádiz, España, 2010.

B. Wang, S. Strömberg, I. A. Nges, M. Nistor, and J. Liu, “Impacts of inoculum pre-treatments on enzyme activity and biochemical methane potential,” J. Biosci. Bioeng., vol. 121, no. 5, pp. 557–60, May 2016.

F. M. Espinoza and et al., “Optimizacion multiple del proceso de digestion anaerobia de vinazas tequileras a temperatura termofílica para la disminucion de la dqo y la generacion de metano,” Boletin Nakari, vol. 18, no. 3, pp. 83–8, 2007.

W. Charles, L. Walker, and R. Cord, “Effect of pre-aeration and inoculum on the start-up of batch thermophilic anaerobic digestion of municipal solid waste,” Bioresour Technol., vol. 100, no. 8, pp. 2329– 35, Apr. 2009.

G. Silvestre, A. Rodríguez, B. Fernández, X. Flotats, and A. Bonmatí, “Biomass adaptation over anaerobic co-digestion of sewage sludge and trapped grease waste,” Bioresour Technol., vol. 102, no. 13, pp. 6830–6, Jul. 2011.

W. A. Mosos, L. S. Cadavid, and A. C. Agudelo, “Potencial de biogás de residuos de frutas y verduras provenientes de restaurantes de palmira,” Acta Agron., vol. 61, no. 5, pp. 97–98, 2012.

Y. Li and et al., “Influence of inoculum source and pre-incubation on bio-methane potential of chicken manure and corn stover.” Appl. Biochem. Biotechnol., vol. 171, no. 1, pp. 117–27, Sep. 2013.

Z. Sapci, J. Morken, and R. Linjordet, “An investigation of the enhancement of biogas yields from lignocellulosic material using two pretreatment methods: Microwave irradiation and steam explosion,” BioResources, vol. 8, no. 2, pp. 1976–85, 2013.

P. Ferrer, M. Cambra, A. Cerisuelo, D. S.Peñaranda, and V. Moset, “The use of agricultural substrates to improve methane yield in anaerobic co-digestion with pig slurry: Effect of substrate type and inclusion level,” Waste Management, vol. 34, no. 1, pp. 196–203, Jan. 2014.

J. Shi and et al., “Effects of microbial and non-microbial factors of liquid anaerobic digestion effluent as inoculum on solid-state anaerobic digestion of corn stover,” Bioresource Technology, vol. 157, pp. 188–196, Apr. 2014.

G. Wordofa, “Effect of thermal pretreatment on chemical composition and biogas production from kitchen waste,” M.S. thesis, University of Jyväskylä, Jyväskylä, Finlandia, 2014.

X. Liu, S. M. Zicari, G. Liu, Y. Li, and R. Zhang, “Pretreatment of wheat straw with potassium hydroxide for increasing enzymatic and microbial degradability,” Bioresource Technology, vol. 185, pp. 150–157, Jun. 2015.

G. Silvestre, A. Bonmatí, and B. Fernández, “Optimisation of sewage sludge anaerobic digestion through co-digestion with ofmsw: Effect of collection system and particle size,” Waste Management, vol. 43, pp. 137–143, Sep. 2015.

G. Zhen, X. Lu, T. Kobayashi, Y.-Y. Li, K. Xu, and Y. Zhao, “Mesophilic anaerobic co-digestion of waste activated sludge and egeria densa: Performance assessment and kinetic analysis,” Applied Energy, vol. 148, pp. 78–86, Jun. 2015.

L. S. Cadavid and I. V. Bolaños, “Grass from public green spaces an alternative source of renewable energy in tropical countries,” Revista ION, vol. 29, no. 1, pp. 109–16, Jan. 2016.

P. Tsapekos, P. G. Kougias, A. Frison, R. Raga, and L. Angelidaki, “Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment,” Bioresour. Technol., vol. 216, pp. 545–52, Sep. 2016.

Z. Jian, W. Shuangfei, L. Shiguang, X. Ping, and X. Tian, “Kinetics of combined thermal pretreatment and anaerobic digestion of waste activated sludge from sugar and pulp industry,” Chemical Engineering Journal, vol. 295, pp. 131–138, Jul. 2016.

N. Nakasima and et al., “Inoculum adaptation during start-up of anaerobic digestion of organic solid waste,” Inf. tecnol., vol. 28, no. 1, pp. 199–208, 2017.

R. E. Salazar, “Influencia en la adición de un coagulante en el mejoramiento de la calidad de un inóculo para optimizar el arranque de un reactor UASB,” Undergraduate thesis, Facultad de Ingenieria, Universidad del Valle, Cali, Colombia, 2001.

P. Torres, A. Cardoso, and O. Rojas, “Mejoramiento de la calidad de lodos anaerobios. influencia de la adición de cloruro férrico,” Ingeniería y Competitividad, vol. 5, no. 2, pp. 23–31, 2004.

W. Choorit and P. Wisarnwan, “Effect of temperature on the anaerobic digestion of palm oil mill effluent,” Electronic Journal of Biotechnology, vol. 10, no. 3, pp. 376–85, Jul. 2007.

P. Lins, C. Reitschuler, and P. Illmer, “Development and evaluation of inocula combating high acetate concentrations during the startup of an anaerobic digestion,” Bioresource Technology, vol. 110, pp. 167–173, Apr. 2012.

I. Cabeza, V. Thomas, A. Vásquez, P. Acevedo, and M. Hernández, “Anaerobic co-digestion of organic residues from different productive sectors in colombia: Biomethanation potential assessment,” Chemical Engineering Transactions, vol. 49, pp. 385–90, 2016.

W. Suksong, P. Kongjan, P. Prasertsan, T. Imai, and S. O-Thong, “Optimization and microbial community analysis for production of biogas from solid waste residues of palm oil mill industry by solid-state anaerobic digestion,” Bioresource Technology, vol. 214, pp. 166–174, Aug. 2016.

M. Wojcieszak and et al., “Adaptation of methanogenic inocula to anaerobic digestion of maize silage,” Frontiers in Microbiology, vol. 8, 2017.

Q. Yang, L. H. Wei, W. Li, Y. Chen, and M. T. Ju, “Effects of feedstock sources on inoculant acclimatization: Start-up strategies and reactor performance,” Appl. Biochem. Biotechnol., vol. 183, no. 3, pp. 729–743, Nov. 2017.

A. G. Vlyssides and P. K. Karlis, “Thermal-alkaline solubilization of waste activated sludge as a pre-treatment stage for anaerobic digestion,” Bioresource Technology, vol. 91, no. 2, pp. 201–206, Jan. 2004.

S. E. Vigueras, F. Ramírez, A. Noyola, and O. Monroy, “Effect of thermal alkaline pretreatment on the anaerobic digestion of wasted activated sludge,” Revista mexicana de ingeniería química, vol. 10, no. 2, pp. 247–255, Aug. 2011.

M. Collazos, J. Valencia, J. Rodríguez, and O. Rojas, “Influencia del proceso de elutriación en el mejoramiento de un inóculo de mala calida para optimizar el arranque de un reactor uasb,” unpublished.

J. Shi, Z. Wang, J. A. Stiverson, Z. Yu, and Y. Li, “Reactor performance and microbial community dynamics during solid-state anaerobic digestion of corn stover at mesophilic and thermophilic conditions,” Bioresour Technol., vol. 136, pp. 574–81, May 2013.

I. Angelidaki and et al., “Defining the biomethane potential (bmp) of solid organic wastes and energy crops: a proposed protocol for batch assays.” Water. Sci. Technol., vol. 59, no. 5, pp. 927–34, 2009.

F. Raposo, M. A. D. la Rubia, V. Fernández, and R. Borja, “Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures,” Renewable and Sustainable Energy Reviews, vol. 16, no. 1, pp. 861–877, Jan. 2012.

B. A. Parra, L. S. Angulo, J. S. Loaiza, W. A. Torres, and P. Torres, “Inoculum mixture optimization as strategy for to improve the anaerobic digestion of food waste for the methane production,” Journal of Environmental Chemical Engineering, vol. 6, no. 1, pp. 1529–1535, Feb. 2018.

P. Torres, S. J. Granados, and B. A. Orobio, “Effects of the incorporation of drinking water sludge on the anaerobic digestion of domestic wastewater sludge for methane production,” Water Sci. Technol., vol. 72, no. 6, pp. 1016–21, 2015.

M. Romero, J. Vila, J. Mata, J. M. Chimenos, and S. Astals, “The role of additives on anaerobic digestion: A review,” Renewable and Sustainable Energy Reviews, vol. 58, pp. 1486–1499, May 2016.

E. Ortega-Martinez, I. Sapkaite, F. Fdz-Polanco, and A. Donoso- Bravo, “From pre-treatment toward inter-treatment. getting some clues from sewage sludge biomethanation,” Bioresource Technology, vol. 212, pp. 227 – 235, Jul. 2016.

J. Ariunbaatar, A. Panico, G. Esposito, F. Pirozzi, and P. N. Lens, “Pretreatment methods to enhance anaerobic digestion of organic solid waste,” Applied Energy, vol. 123, pp. 143–156, Jun. 2014.

W. M. Budzianowski, “A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment,” Renewable and Sustainable Energy Reviews, vol. 54, pp. 1148–1171, Feb. 2016.

Z. Naji and et al., “Batch anaerobic co-digestion of ofmsw (organic fraction of municipal solid waste), twas (thickened waste activated sludge) and rs (rice straw): Influence of twas and rs pretreatment and mixing ratio,” Energy, vol. 107, pp. 131–140, Jul. 2016.

A. J. Ward, P. J. Hobbs, P. J. Holliman, and D. L. Jones, “Optimisation of the anaerobic digestion of agricultural resources,” Bioresource Technology, vol. 99, no. 17, pp. 7928–7940, Nov. 2008.

B. A. Parra and et al., “EvaluaciÃde lodos de PTAR municipales como inÃen la digestiÃanaerobia de biorresiduos,” Revista ION, vol. 29, pp. 37–46, jun 2016.

C. Holliger and et al., “Towards a standardization of biomethane potential tests,” Water Sci. Technol., vol. 74, no. 11, pp. 2515–2522, Dec. 2016.

G. Capson-Tojo, C. Girard, M. Rouez, M. Crest, J.-P. Steyer, N. Bernet, J.-P. Delgenès, and R. Escudié, “Addition of biochar and trace elements in the form of industrial fecl3 to stabilize anaerobic digestion of food waste: dosage optimization and long-term study,” Journal of Chemical Technology & Biotechnology, vol. 94, no. 2, pp. 505– 515, 2019.

Descargas

Publicado

2019-05-08

Cómo citar

Parra-Orobio, B. A., Nieto-Mendoza, M., Rivera-Henao, D., Manyoma-Velásquez, P. C., & Torres-Lozada, P. (2019). Selección de metodologías de acondicionamiento de inóculos para la digestión anaerobia de residuos de alimentos. Revista Facultad De Ingeniería Universidad De Antioquia, (92), 9–18. https://doi.org/10.17533/udea.redin.20190510