Hormigón reforzado con fibra que contiene residuos de cáscara de coco, cenizas volantes y fibra de polipropileno
DOI:
https://doi.org/10.17533/udea.redin.20190403Palabras clave:
materiales de construcción, hormigón, fibra, desperdicio agrícola, desarrollo sostenibleResumen
El objetivo de este estudio es investigar el efecto de la adición de fibra de polipropileno en eco-hormigón fabricado con cenizas volantes, un producto industrial como material de reemplazo parcial de cemento, y cáscara de coco, un residuo agrícola, como agregados gruesos, sobre las propiedades mecánicas. del hormigón. Se desarrollaron dos mezclas diferentes, una con cáscara de coco solo como agregados gruesos y la otra con la combinación de agregados convencionales y cáscara de coco como agregados gruesos. El contenido de cemento se reemplazó con cenizas volantes de clase F al 10% en peso en las mezclas de concreto. Las fracciones en volumen de las fibras de polipropileno utilizadas en este estudio fueron 0,25%, 0,5%, 0,75% y 1,0%. La adición de fibras de polipropileno reduce ligeramente la caída y la densidad del concreto de cáscara de coco. A medida que aumenta la fracción de volumen de las fibras, la resistencia a la compresión y el módulo de elasticidad del hormigón de cáscara de coco también aumenta hasta en un 0,5% de la fracción de volumen de fibra. La resistencia a la tracción dividida y la resistencia a la flexión del hormigón de cáscara de coco también se mejoraron con la adición de fibra. La adición de 0,75% y 1,0% en volumen de fibras de polipropileno reduce ligeramente la resistencia a la compresión. Los resultados de este estudio muestran que las fibras de polipropileno pueden usarse en concreto de cáscara de coco para mejorar las propiedades mecánicas del compuesto.
Descargas
Citas
A. A. Ramezanianpour, M. M. Khani, and G. Ahmadibeni, “The effect of rice husk ash on mechanical properties and durability of sustainable concretes,” International Journal of Civil Engineering, vol. 7, no. 2, pp. 83–91, Jun. 2009.
M. Ali, “Coconut fibre: a versatile material and its applications in engineering,” Journal of Civil Engineering and Construction Technology, vol. 2, no. 9, pp. 189–97, Sep. 2011.
K. H. Mo, T. S. Chin, U. J. Alengaram, and M. Z. Jumaat, “Material and structural properties of waste-oil palm shell concrete incorporating ground granulated blast-furnace slag reinforced with low-volume steel fibres,” Journal of Cleaner Production, vol. 133, pp. 414–426, Oct. 2016.
Ministry of Agriculture and Farmer’s Welfare. Coconut development board. Accessed Nov. 15, 2018. [Online]. Available: http://www.coconutboard.nic.in
C. Meyer, “The greening of the concrete industry,” Cement and Concrete Composites, vol. 31, no. 8, pp. 601–605, Sep. 2019.
L. M. Federico and S. E. Chidiac, “Waste glass as a supplementary cementitious material in concrete – critical review of treatment methods,” Cement and Concrete Composites, vol. 31, no. 8, pp. 606–610, Sep. 2019.
U. J. Alengaram, B. A. A. Muhit, and M. Z. B. Jumaat, “Utilization of oil palm kernel shell as lightweight aggregate in concrete – a review,” Construction and Building Materials, vol. 38, pp. 161–172, Jan. 2013.
R. Prakash, R. Thenmozhi, and S. N. Raman, “Mechanical characterization and flexural performance of eco-friendly concrete produced with fly ash as cement replacement and coconut shell coarse aggregate,” unpublished.
K. Gunasekaran, P. Kumar, and M. Lakshmipathy, “Mechanical and bond properties of coconut shell concrete,” Construction and Building Materials, vol. 25, no. 1, pp. 92–98, Jan. 2011.
H. B. Basri, M. A. Mannan, and M. F. M. Zain, “Concrete using waste oil palm shells as aggregate,” Cement and Concrete Research, vol. 29, no. 4, pp. 619–622, 1999.
K. Gunasekaran, R. Annadurai, and S. Kumar, “A study on some durability properties of coconut shell aggregate concrete,” Materials and Structures, vol. 48, no. 5, pp. 1253–1264, May 2013.
K. Gunasekaran, R. Ramasubramani, R. Annadurai, and S. P. Chandar, “Study on reinforced lightweight coconut shell concrete beam behavior under torsion,” Materials Design, vol. 57, pp. 374–382, May 2014.
A. J. Prithika and S. Sekar, “Mechanical and fracture characteristics of eco-friendly concrete produced using coconut shell, ground granulated blast furnace slag and manufactured sand,” Construction and Building Materials, vol. 103, pp. 1–7, Jan. 2016.
P. Dinakar, K. G. Babu, and M. Santhanam, “Durability properties of high volume fly ash self compacting concretes,” Cement and Concrete Composites, vol. 30, no. 10, pp. 880–886, Nov. 2008.
K. H. Mo, U. J. Alengaram, M. Z. Jumaat, M. Y. Jing, and J. Lim, “Assessing some durability properties of sustainable lightweight oil palm shell concrete incorporating slag and manufactured sand,” Journal of Cleaner Production, vol. 112, pp. 763–770, Jan. 2016.
P. Shafigh, H. Mahmud, and M. Z. Jumaat, “Effect of steel fiber on the mechanical properties of oil palm shell lightweight concrete,” Materials Design, vol. 32, no. 7, pp. 3926–3932, Aug. 2011.
S. P. Yap, U. J. Alengaram, and M. Z. Jumaat, “Enhancement of mechanical properties in polypropylene– and nylon–fibre reinforced oil palm shell concrete,” Materials Design, vol. 49, pp. 1034–1041, Aug. 2013.
S. Poh, C. Hooi, U. J. Alengaram, K. Hung, and M. Zamin, “Flexural toughness characteristics of steel–polypropylene hybrid fibre-reinforced oil palm shell concrete,” Materials Design, vol. 57, pp. 652–659, May 2014.
M. K. Yew, H. B. Mahmud, B. C. Ang, and M. C. Yew, “Influence of different types of polypropylene fibre on the mechanical properties of high-strength oil palm shell lightweight concrete,” Construction and Building Materials, vol. 90, pp. 36–43, 2015.
P. R. K. Chakravarthy, R. Janani, T. Ilango, and K. Dharani, “Properties of concrete partially replaced with coconut shell as coarse aggregate and steel fibres in addition to its concrete volume,” IOP Conference Series: Materials Science and Engineering, vol. 183, Mar. 2017.
V. M. Shrestha, S. Anandh, and S. S. Nachiar, “Experimental study on the strength parameter of quarry dust mixed coconut shell concrete adding coconut fibre,” IOP Conference Series: Earth and Environmental Science, vol. 80, Jul. 2017.
Specification for 53 grade ordinary Portland cement, IS 12269, 2013.
N. A. Memon, S. R. Sumadi, and M. Ramli, “Performance of high wokability slag-cement mortar for ferrocement,” Building and Environment, vol. 42, no. 7, pp. 2710–2717, Jul. 2007.
H. Mazaheripour, S. Ghanbarpour, S. Mirmoradi, and I. Hosseinpour, “The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete,” Construction and Building Materials, vol. 25, no. 1, pp. 351 – 358, Jan. 2011.
E. T. Dawood and M. Ramli, “Flowable high-strength system as repair material,” Structural Concrete, vol. 11, no. 4, pp. 199–209, Dec. 2010.
G. Lu, K. Wang, and T. J. Rudolphi, “Modeling rheological behavior of highly flowable mortar using concepts of particle and fluid mechanics,” Cement and Concrete Composites, vol. 30, no. 1, pp. 1–12, Jan. 2008.
P. K. Mehta and P. J. M. Monteiro, Concrete: Microstructure, Properties and Materials, 3rd ed. McGraw-Hill Companies, 2006.
A. Al-Harthy, M. A. Halim, R. Taha, and K. Al-Jabri, “The properties of concrete made with fine dune sand,” Construction and Building Materials, vol. 21, no. 8, pp. 1803–1808, Aug. 2007.
J. Newman and P. Owens, Properties of Lightweight Concrete, in Advanced Concrete Technology: Concrete Properties. Oxford: Butterworth-Heinemann, 2003.
K. Gunasekaran, R. Annadurai, and P. Kumar, “Study on reinforced lightweight coconut shell concrete beam behavior under flexure,” Materials Design, vol. 46, pp. 157–167, Apr. 2013.
S. Kakooei, H. M. Akil, M. Jamshidi, and J. Rouhi, “The effects of polypropylene fibers on the properties of reinforced concrete structures,” Construction and Building Materials, vol. 27, no. 1, pp. 73–77, Feb. 2012.
A. M. Neville, Properties of Concrete, 5th ed. Essex, Inglaterra: Pearson Education Limited, 2011.
Z. Li, Advanced concrete technology. John Wiley Sons, Inc., 2011.
P. Balaguru and A. Foden, “Properties of fiber reinforced structural lightweight concrete,” ACI Structural Journal, vol. 93, no. 1, pp. 62–77, Jan. 1996.
P. Balaguru and M. G. Dipsia, “Properties of fiber reinforced high-strength semi-lightweight concrete,” ACI Materials Journal, vol. 90, no. 5, pp. 399–405, Jan. 1993.
A. M. Neville and J. J. Brooks, Concrete Technology, 2nd ed. Prentice-Hall, 2010.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Revista Facultad de Ingeniería Universidad de Antioquia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.