Hormigón reforzado con fibra que contiene residuos de cáscara de coco, cenizas volantes y fibra de polipropileno

Autores/as

  • R. Prakash Facultad de Ingeniería y Tecnología del Gobierno de Alagappa Chettiar https://orcid.org/0000-0002-4695-0234
  • R. Thenmozhi Facultad de Tecnología del Gobierno
  • Sudharshan N. Raman Universidad Nacional de Malasia https://orcid.org/0000-0003-4149-0141
  • C. Subramanian Facultad de Ingeniería y Tecnología del Gobierno de Alagappa Chettiar

DOI:

https://doi.org/10.17533/udea.redin.20190403

Palabras clave:

materiales de construcción, hormigón, fibra, desperdicio agrícola, desarrollo sostenible

Resumen

El objetivo de este estudio es investigar el efecto de la adición de fibra de polipropileno en eco-hormigón fabricado con cenizas volantes, un producto industrial como material de reemplazo parcial de cemento, y cáscara de coco, un residuo agrícola, como agregados gruesos, sobre las propiedades mecánicas. del hormigón. Se desarrollaron dos mezclas diferentes, una con cáscara de coco solo como agregados gruesos y la otra con la combinación de agregados convencionales y cáscara de coco como agregados gruesos. El contenido de cemento se reemplazó con cenizas volantes de clase F al 10% en peso en las mezclas de concreto. Las fracciones en volumen de las fibras de polipropileno utilizadas en este estudio fueron 0,25%, 0,5%, 0,75% y 1,0%. La adición de fibras de polipropileno reduce ligeramente la caída y la densidad del concreto de cáscara de coco. A medida que aumenta la fracción de volumen de las fibras, la resistencia a la compresión y el módulo de elasticidad del hormigón de cáscara de coco también aumenta hasta en un 0,5% de la fracción de volumen de fibra. La resistencia a la tracción dividida y la resistencia a la flexión del hormigón de cáscara de coco también se mejoraron con la adición de fibra. La adición de 0,75% y 1,0% en volumen de fibras de polipropileno reduce ligeramente la resistencia a la compresión. Los resultados de este estudio muestran que las fibras de polipropileno pueden usarse en concreto de cáscara de coco para mejorar las propiedades mecánicas del compuesto.

|Resumen
= 1647 veces | PDF (ENGLISH)
= 533 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

R. Prakash, Facultad de Ingeniería y Tecnología del Gobierno de Alagappa Chettiar

Departmento de Ingeniería Civil, Profesor Asistente.

R. Thenmozhi, Facultad de Tecnología del Gobierno

Departmento de Ingeniería Civil, Profesor Asistente.

Sudharshan N. Raman, Universidad Nacional de Malasia

Facultad de Ingeniería y Entorno Construido, Profesor Titular.

C. Subramanian, Facultad de Ingeniería y Tecnología del Gobierno de Alagappa Chettiar

Departmento de Ingeniería Civil, Profesor Asistente.

Citas

A. A. Ramezanianpour, M. M. Khani, and G. Ahmadibeni, “The effect of rice husk ash on mechanical properties and durability of sustainable concretes,” International Journal of Civil Engineering, vol. 7, no. 2, pp. 83–91, Jun. 2009.

M. Ali, “Coconut fibre: a versatile material and its applications in engineering,” Journal of Civil Engineering and Construction Technology, vol. 2, no. 9, pp. 189–97, Sep. 2011.

K. H. Mo, T. S. Chin, U. J. Alengaram, and M. Z. Jumaat, “Material and structural properties of waste-oil palm shell concrete incorporating ground granulated blast-furnace slag reinforced with low-volume steel fibres,” Journal of Cleaner Production, vol. 133, pp. 414–426, Oct. 2016.

Ministry of Agriculture and Farmer’s Welfare. Coconut development board. Accessed Nov. 15, 2018. [Online]. Available: http://www.coconutboard.nic.in

C. Meyer, “The greening of the concrete industry,” Cement and Concrete Composites, vol. 31, no. 8, pp. 601–605, Sep. 2019.

L. M. Federico and S. E. Chidiac, “Waste glass as a supplementary cementitious material in concrete – critical review of treatment methods,” Cement and Concrete Composites, vol. 31, no. 8, pp. 606–610, Sep. 2019.

U. J. Alengaram, B. A. A. Muhit, and M. Z. B. Jumaat, “Utilization of oil palm kernel shell as lightweight aggregate in concrete – a review,” Construction and Building Materials, vol. 38, pp. 161–172, Jan. 2013.

R. Prakash, R. Thenmozhi, and S. N. Raman, “Mechanical characterization and flexural performance of eco-friendly concrete produced with fly ash as cement replacement and coconut shell coarse aggregate,” unpublished.

K. Gunasekaran, P. Kumar, and M. Lakshmipathy, “Mechanical and bond properties of coconut shell concrete,” Construction and Building Materials, vol. 25, no. 1, pp. 92–98, Jan. 2011.

H. B. Basri, M. A. Mannan, and M. F. M. Zain, “Concrete using waste oil palm shells as aggregate,” Cement and Concrete Research, vol. 29, no. 4, pp. 619–622, 1999.

K. Gunasekaran, R. Annadurai, and S. Kumar, “A study on some durability properties of coconut shell aggregate concrete,” Materials and Structures, vol. 48, no. 5, pp. 1253–1264, May 2013.

K. Gunasekaran, R. Ramasubramani, R. Annadurai, and S. P. Chandar, “Study on reinforced lightweight coconut shell concrete beam behavior under torsion,” Materials Design, vol. 57, pp. 374–382, May 2014.

A. J. Prithika and S. Sekar, “Mechanical and fracture characteristics of eco-friendly concrete produced using coconut shell, ground granulated blast furnace slag and manufactured sand,” Construction and Building Materials, vol. 103, pp. 1–7, Jan. 2016.

P. Dinakar, K. G. Babu, and M. Santhanam, “Durability properties of high volume fly ash self compacting concretes,” Cement and Concrete Composites, vol. 30, no. 10, pp. 880–886, Nov. 2008.

K. H. Mo, U. J. Alengaram, M. Z. Jumaat, M. Y. Jing, and J. Lim, “Assessing some durability properties of sustainable lightweight oil palm shell concrete incorporating slag and manufactured sand,” Journal of Cleaner Production, vol. 112, pp. 763–770, Jan. 2016.

P. Shafigh, H. Mahmud, and M. Z. Jumaat, “Effect of steel fiber on the mechanical properties of oil palm shell lightweight concrete,” Materials Design, vol. 32, no. 7, pp. 3926–3932, Aug. 2011.

S. P. Yap, U. J. Alengaram, and M. Z. Jumaat, “Enhancement of mechanical properties in polypropylene– and nylon–fibre reinforced oil palm shell concrete,” Materials Design, vol. 49, pp. 1034–1041, Aug. 2013.

S. Poh, C. Hooi, U. J. Alengaram, K. Hung, and M. Zamin, “Flexural toughness characteristics of steel–polypropylene hybrid fibre-reinforced oil palm shell concrete,” Materials Design, vol. 57, pp. 652–659, May 2014.

M. K. Yew, H. B. Mahmud, B. C. Ang, and M. C. Yew, “Influence of different types of polypropylene fibre on the mechanical properties of high-strength oil palm shell lightweight concrete,” Construction and Building Materials, vol. 90, pp. 36–43, 2015.

P. R. K. Chakravarthy, R. Janani, T. Ilango, and K. Dharani, “Properties of concrete partially replaced with coconut shell as coarse aggregate and steel fibres in addition to its concrete volume,” IOP Conference Series: Materials Science and Engineering, vol. 183, Mar. 2017.

V. M. Shrestha, S. Anandh, and S. S. Nachiar, “Experimental study on the strength parameter of quarry dust mixed coconut shell concrete adding coconut fibre,” IOP Conference Series: Earth and Environmental Science, vol. 80, Jul. 2017.

Specification for 53 grade ordinary Portland cement, IS 12269, 2013.

N. A. Memon, S. R. Sumadi, and M. Ramli, “Performance of high wokability slag-cement mortar for ferrocement,” Building and Environment, vol. 42, no. 7, pp. 2710–2717, Jul. 2007.

H. Mazaheripour, S. Ghanbarpour, S. Mirmoradi, and I. Hosseinpour, “The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete,” Construction and Building Materials, vol. 25, no. 1, pp. 351 – 358, Jan. 2011.

E. T. Dawood and M. Ramli, “Flowable high-strength system as repair material,” Structural Concrete, vol. 11, no. 4, pp. 199–209, Dec. 2010.

G. Lu, K. Wang, and T. J. Rudolphi, “Modeling rheological behavior of highly flowable mortar using concepts of particle and fluid mechanics,” Cement and Concrete Composites, vol. 30, no. 1, pp. 1–12, Jan. 2008.

P. K. Mehta and P. J. M. Monteiro, Concrete: Microstructure, Properties and Materials, 3rd ed. McGraw-Hill Companies, 2006.

A. Al-Harthy, M. A. Halim, R. Taha, and K. Al-Jabri, “The properties of concrete made with fine dune sand,” Construction and Building Materials, vol. 21, no. 8, pp. 1803–1808, Aug. 2007.

J. Newman and P. Owens, Properties of Lightweight Concrete, in Advanced Concrete Technology: Concrete Properties. Oxford: Butterworth-Heinemann, 2003.

K. Gunasekaran, R. Annadurai, and P. Kumar, “Study on reinforced lightweight coconut shell concrete beam behavior under flexure,” Materials Design, vol. 46, pp. 157–167, Apr. 2013.

S. Kakooei, H. M. Akil, M. Jamshidi, and J. Rouhi, “The effects of polypropylene fibers on the properties of reinforced concrete structures,” Construction and Building Materials, vol. 27, no. 1, pp. 73–77, Feb. 2012.

A. M. Neville, Properties of Concrete, 5th ed. Essex, Inglaterra: Pearson Education Limited, 2011.

Z. Li, Advanced concrete technology. John Wiley Sons, Inc., 2011.

P. Balaguru and A. Foden, “Properties of fiber reinforced structural lightweight concrete,” ACI Structural Journal, vol. 93, no. 1, pp. 62–77, Jan. 1996.

P. Balaguru and M. G. Dipsia, “Properties of fiber reinforced high-strength semi-lightweight concrete,” ACI Materials Journal, vol. 90, no. 5, pp. 399–405, Jan. 1993.

A. M. Neville and J. J. Brooks, Concrete Technology, 2nd ed. Prentice-Hall, 2010.

Descargas

Publicado

2020-10-17

Cómo citar

Prakash, R., Thenmozhi, R., N. Raman, S., & Subramanian, C. (2020). Hormigón reforzado con fibra que contiene residuos de cáscara de coco, cenizas volantes y fibra de polipropileno. Revista Facultad De Ingeniería Universidad De Antioquia, (94), 33–42. https://doi.org/10.17533/udea.redin.20190403

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 > >> 

También puede {advancedSearchLink} para este artículo.