Recirculating aquaculture system with three phase fluidized bed reactor: Carbon and nitrogen removal

Keywords: Aquaculture, organic matter, wastewater, water treatment

Abstract

The core objective of the study was to evaluate the organic matter and nitrogen removal efficiency in a recirculating aquaculture system for the intensive laboratory-bred rainbow trout. The treatment system consisted of an upflow reactor (UR), a pre-filtration unit, a three-phase airlift fluidized bed reactor (AFBR), a granular unit for the UR and the AFBR effluents filtration, and an ultraviolet (UV) unit for the final effluent disinfection. A plastic material was used as support media in the UR, and granular zeolite with an effective size of 1.30 mm in an 80 g/L constant concentration was used as a carrier for the AFBR. Average removal efficiencies of biochemical oxygen demand (BOD) chemical oxygen demand (COD), ammonium, nitrite, nitrate, and total nitrogen were 94.4, 91.7, 52.5, 13.4, 1.3 and 6.0% respectively. In the rainbow trout rearing tanks, there was a water volume of 125 L and water exchange rates of 125 and 250 L/h, there were no registered mortalities; the calculated daily weight gains were 1.55 and 1.51 g/day and the final stocking densities were respectively 20.87 and 20.58 kg/m3. The results suggested that the system had the capability to develop a nitrification process for maintaining water quality characteristics within the recommended values for rainbow trout farming, but total nitrogen was not effectively removed due to the weak denitrification process, since there were modest values of nitrite and overall nitrogen removal.

|Abstract
= 109 veces | PDF
= 101 veces|

Downloads

Download data is not yet available.

Author Biographies

Gloria Lucía Cárdenas-Calvachi, Universidad Mariana

Departamento de Ingeniería Ambiental

Iván Andrés Sánchez-Ortiz, Universidad de Nariño

Departamento de Recursos Hidrobiológicos, Profesor Asociado

References

FAO. (2016) The State of World Fisheries and Aquaculture 2016. Contributing to food security and nutrition for all. [FAO]. [Online]. Available: http://www.fao.org/3/a-i5555e.pdf/

M. B. Timmons and J. M. Ebeling, Recirculating Aquaculture. New York, USA: Cayuga Aqua Ventures, LLC, 2010.

S. Pulatsu and et al, “The impact of rainbow trout farm effluents on water quality of Karasu stream,Turkey,” Turk J Fish Aquat Sci, vol. 4, pp. 9–15, Apr. 2004.

J. Dalsgaard, B. K. Larsen, and P. B. Pedersen, “Nitrogen waste from rainbow trout (Oncorhynchus mykiss) with particular focus on urea,” Aquacult. Eng., vol. 65, March 2005. [Online]. Available: https://doi.org/10.1016/j.aquaeng.2014.10.004

S. T. Summerfelt, J. W. Davidson, T. B. Waldrop, S. M. Tsukuda, and J. B. Williams, “A partial-reuse system for coldwater aquaculture,” Aquacult. Eng., vol. 31, no. 3, October 2004. [Online]. Available: https://doi.org/10.1016/j.aquaeng.2004.03.005

S. S. Lam, M. A. Ambak, A. Jusoh, and A. T. Law, “Waste excretion of marble goby (Oxyeleotris marmorata Bleeker) fed with different diets,” Aquaculture, vol. 274, no. 1, January 31 2008. [Online]. Available: https://doi.org/10.1016/j.aquaculture.2007.11.023

S. T. Summerfelt, M. Sharrer, M. Gearheart, K. Gillette, and B. J. Vinci, “Evaluation of partial water reuse systems used for Atlanticsalmon smolt production at the White River National Fish Hatchery,” Aquacult. Eng., vol. 41, no. 2, September 2009. [Online]. Available: https://doi.org/10.1016/j.aquaeng.2009.06.003

Y. Liu and et al, “Structure optimization of CycloBio fluidized sand biofilters based on numerical simulation,” Aquacult. Eng., vol. 69, November 2015. [Online]. Available: https://doi.org/10.1016/ j.aquaeng.2015.08.004

W. Hutchinson, M. Jeffrey, D. O’Sullivan, D. Casement, and S. Clarke, Recirculating aquaculture systems minimum standards for design, construction and management. Kent Town, S. Aust. : Inland Aquaculture Association of South Australia, 2004.

J. Schroeder and et al, “Impact of ozonation and residual ozoneproduced oxidants on the nitrification performance of movingbed biofilters from marine recirculating aquaculture systems,” Aquacult. Eng., vol. 65, March 2015. [Online]. Available: https: //doi.org/10.1016/j.aquaeng.2014.10.008

S. Summerfelt, “Design and management of conventional fluidizedsand biofilters,” Aquacult. Eng., vol. 34, no. 3, May 2006. [Online]. Available: https://doi.org/10.1016/j.aquaeng.2005.08.010

N. Areerachakul, “Biofilters in recirculation aquaculture system,” in 96th The IRES International Conference, Amsterdam, Netherlands, 2018, pp. 16–19.

L. F. Pedersen, R. Oosterveld, and P. B. Pedersen, “Nitrification performance and robustness of fixed and moving bed biofilters having identical carrier elements,” Aquacult. Eng., vol. 65, March 2015. [Online]. Available: https://doi.org/10.1016/j.aquaeng.2014. 10.005

Review of recirculation aquaculture system technologies and their commercial application, prepared for highlands and islands enterprise, final report, 3rd ed., Highlands and Islands Enterprise, University of Stirling Aquaculture, 2014.

H. J. Schreier, N. Mirzoyan, and K. Saito, “Microbial diversity of biological filters in recirculating aquaculture systems,” Curr. Opin. Biotechnol., vol. 21, no. 3, June 2010. [Online]. Available: https://doi.org/10.1016/j.copbio.2010.03.011

I. A. Sánchez and et al, “Reactores aeróbios de lecho fluidizado trifásico con circulación interna: caracterización hidrodinámica y del soporte,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 56, pp. 68–77, Dec. 2010.

I. A. Sánchez and T. Matsumoto, “Hydrodynamic characterization and performance evaluation of an aerobic three phase airlift fluidized bed reactor in a recirculation aquaculture system for Nile Tilapia production,” Aquacult. Eng., vol. 47, March 2012. [Online]. Available: https://doi.org/10.1016/j.aquaeng.2011.12.006

M. B. Timmons and J. M. Ebeling and F. W. Wheaton and S. T. Summerfelt and B. J. Vinci. (2002) Sistemas de recirculación para la acuicultura. [Fundación Chile]. [Online]. Available: https://www.ag.arizona.edu/azaqua/AquacultureTIES/ publications/Libro%20de%20Recirculaci%F3n.pdf

ICONTEC, “Suelos. ensayo para determinar la granulometría por tamizado,” ICONTEC, Bogotá, Col, Tech. Rep. NTC 1522, Nov. 1979.

ICONTEC, “Concretos. método de ensayo para el análisis portamizado de los agregados finos y gruesos,” ICONTEC, Bogotá, Col, Tech. Rep. NTC 77, Sep. 2007.

C. Richter, Água. Métodos e Tecnologia de Tratamento. São Paulo, BR: Blucher, 2009.

G. M. Fair and J. C. Geyer, Eds., Purificación de aguas y tratamiento y remoción de aguas residuales, ser. Ingeniería sanitaria y de aguas residuales. México D.F.: Editorial Limusa S.A., 1994, p. 764.

M. Levstek, I. Plazl, and J. D. Rouse, “Estimation of the specific surface area for a porous carrier,” Acta Chim Slov., vol. 57, no. 1, pp. 45–51, Mar. 2010.

American Public Health Association (APHA) American Water Works Association (AWWA) Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd ed. Washington, USA: American Public Health Association (APHA), 2012.

R. J. Morrow, “Effects of ammonia on growth and metabolism in tilapia, Oreochromis niloticus,” M.S. thesis, Dept. Biology, Queen’s Univ., Kingston, Canada, 2009.

D. C. Montgomery and G. C. Runger, Probabilidad y estadística aplicadas a la ingeniería, 2nd ed. México: Limusa Wiley, 2002.

J. Colt, “Water quality requirements for reuse systems,” Aquacult. Eng., vol. 34, no. 3, May 2006. [Online]. Available: https://doi.org/10. 1016/j.aquaeng.2005.08.011

J. E. Bowles, Propiedades geofísicas de los Suelos. Bogotá, Col.: McGraw-Hill Interamericana S.A., 1982.

T. W. Lambe and R. V. Whitman, Mecánica de suelos. México: Limusa, 2004.

J. Krause and et al. (2006, March) Design guide for recirculating aquaculture system. [Online]. Available: https://bit.ly/2QtJ479

M. Mocanu and et al, “The influence of different stocking densities on growth performances of Oncorhynchus Mykiss (Walbaum, 1792) in a recirculating aquaculture system,” Lucrări Ştiinţifice, vol. 56, pp. 326–331, 2006.

M. C. Blanco, La Trucha Cría industrial. Madrid, Esp.: Ediciones Mundi-Prensa, 1995.

B. Breton, El cultivo de la Trucha. Barcelona, Esp.: Omega, 2006.

Y. A. Maigual, “Utilização de reator aeróbio de leito fluidizado com circulação em tubos concêntricos no tratamento de águas residuarias da produção intensiva de tilapia com recirculação da água tratada,” M.S. thesis, Universidade Estadual Paulista ”Júlio de Mesquita Filho”, São Paulo, Brasil, 2011.

P. Mira, L. Pedersen, and P. B. Pedersen, “Influence of fixed and moving bed biofilters on micro particle dynamics in a recirculating aquaculture system,” Aquacult. Eng., vol. 78, no. Part A, August 2017. [Online]. Available: https://doi.org/10.1016/j.aquaeng.2016.09.002

M. V. Sperling, Ed., Basic principles of wastewater treatment, ser. Biological wastewater treatment series. London, UK: IWA Publishing, 2007, p. 212.

J. A. Romero, Tratamiento de aguas residuales :Teoría y principios de diseño, 3rd ed. Bogotá, Col.: Escuela Colombiana de Ingeniería, 2005.

C. A. De Lemos, Ed., Principios del tratamiento biológico de Aguas Residuales. Reactores Anaerobios, ser. Principios del tratamiento biológico de Aguas Residuales. Pasto, Col.: Editorial Universitaria- Universidad de Nariño, 2013, p. 396.

G. L. Cárdenas and R. M. Ramos, “Evaluación de la eficiencia de reactores de lecho fijo utilizando aguas mieles residuales de trapiches artesanales,” Ciencia e Ingeniería Neogranadina, vol. 19, no. 1, 2009. [Online]. Available: https://doi.org/10.18359/rcin.308 [40] R. F. Gonçalves and et al, “Pós-tratamento de efluentes de reactores anaeróbios por reatores com biofilme,” in Pós-tratamento de efluentes de reactores anaerobios. Belo Horizonte, Br.: FINEP/PROSAB, 2001, p. 82.

C. Michel, P. Ghittino, and P. de Kinkelin, Tratado de las enfermedades de los peces. Zaragoza, Esp.: Acribia S.A, 1991.

R. V. Thurston and R. C. Russo, “Acute toxicity of ammonia to rainbow trout,” T. Am. Fish. Soc., vol. 112, no. 5, September 1983. [Online]. Available: https://doi.org/10.1577/1548-8659(1983) 112<696:ATOATR>2.0.CO;2

C. B. Martínez, F. Azebedo, and E. Ulbricht, “Toxicidade e Efeitos da Amônia em Peixes Neotropicais,” in Tópicos Especiais em Biologia Aquática e Aqüicultura, J. S. Brake, Ed. Sociedade Brasileira de Aquicultura e Biologia Aquática, 2006.

J. Davidson, N. Helwig, and S. T. Summerfelt, “Fluidized sand biofilters used to remove ammonia, biochemical oxygen demand, total coliform bacteria, and suspended solids from an intensive aquaculture effluent,” Aquacult. Eng., vol. 39, no. 1, August 2008. [Online]. Available: https://doi.org/10.1016/j.aquaeng.2008.04.002

M. V. Sperling, Introducción a la calidad del agua y al tratamiento de aguas residuales. Pasto, Col.: Editorial Universitaria-Universidad de Nariño, 2012.

Z. Huang and et al, “Ammonia-oxidizing bacteria and archaea within biofilters of a commercial recirculating marine aquaculture system,” AMB Expr., vol. 8, no. 1, February 10 2018. [Online]. Available: https://doi.org/10.1186/s13568-018-0551-1

R. Bartelme, S. McLellan, and R. Newton, “Freshwater recirculating aquaculture system operations drive biofilter bacterial community shifts around a stable nitrifying consortium of Ammonia-Oxidizing Archaea and Comammox Nitrospira,” Front Microbiol., vol. 8, January30 2017. [Online]. Available: https://doi.org/10.3389/fmicb.2017. 00101

J. T. Pulkkinen, T. Kiuru, S. L. Aalto, J. Koskela, and J. Vielma, “Startup and effects of relative water renewal rate on water quality and growth of rainbow trout (Oncorhynchus mykiss) in a unique RAS research platform,” Aquacult. Eng., vol. 82, August 2018. [Online]. Available: https://doi.org/10.1016/j.aquaeng.2018.06.003

N. B. Martínez and A. Tejeda and A. Del Toro and M. P. Sánchez and F. Zurita, “Nitrogen removal in pilot-scale partially saturated vertical wetlands with and without an internal source of carbon,” Sci. Total Environ, vol. 645, December 15 2018. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2018.07.147

A. Docan, V. Cristea, L. Dediu, M. Mocanu, and L. Grecu, “The impact of level of the stocking density on the hematological parameters of rainbow trout (Oncorhynchus mykiss) reared in recirculating aquaculture systems,” AACL Bioflux, vol. 4, no. 4, pp. 536–541, oct 2011.

G. Jojoa, E. Ibarra, and I. A. Sánchez, “Efecto del tiempo de retención hidráulica en reactores de lecho fijo para el tratamiento de efluentes del cultivo de Trucha arcoíris (Oncorhynchus mykiss),” Livestock Res. Rural Dev., vol. 25, no. 10, pp. 1–16, 2013.

I. Sánchez, W. Sanguino, A. Gómez, and R. García, “Evaluation of a rainbow trout (Oncorhynchus mikyss) culture water recirculating system,” Revista MVZ Córdoba, vol. 19, no. 3, pp. 4226–4241, 2014.

J. L. Arredondo and I. Á. Barriga and L. G. Nuñez and J. T. Ponce, “Cultivo de Trucha Arcoiris (Oncorhynchus mykiss, Walbaum) en un sistema cerrado de recirculación de agua,” in CIVA 2006, México, 2006, pp. 1038–1047.

B. K. Larsen, P. V. Skov, D. J. McKenkie, and A. Jokumsen, “The effects of stocking density and low level sustained exercise on the energetic efficiency of rainbow trout (Oncorhynchus mykiss) reared at 19 °C,” Aquaculture, vol. 324, January 12 2012. [Online]. Available: https://doi.org/10.1016/j.aquaculture.2011.10.021

B. P. North and et al, “The impact of stocking density on the welfare of rainbow trout (Oncorhynchus mykiss),” Aquaculture, vol. 255, no. 1, May 31 2006. [Online]. Available: https://doi.org/10.1016/ j.aquaculture.2006.01.004

I. Sirakov and E. Ivancheva, “Influence of stocking density on the growth performance of rainbow trout and brown trout are grown in the recirculation system,” Bulg. J. Agric. Sci., vol. 14, no. 2, pp. 150– 154, 2008.

Published
2020-02-07