Evaluación analítica de desempeño del GFDM en sistemas de comunicación acústica subacuática

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20210741

Palabras clave:

Teoría de probabilidad, GFDM, evaluación de desempeño, telecomunicaciones, tecnología subacuática

Resumen

El rápido crecimiento de Internet de las cosas (IoT) ha extendido su concepto a entornos subacuáticos. Sin embargo, la implementación de estos sistemas a través de comunicación cableada todavía representa un desafío tecnológico, principalmente debido al alto costo de su implementación. Por lo tanto, las comunicaciones inalámbricas se consideran una solución interesante para el despliegue de sistemas de comunicaciones subacuáticos. Investigaciones preliminares indican que la comunicación inalámbrica acústica subacuática se puede utilizar para algunas aplicaciones de Internet de las cosas subacuáticas, principalmente debido al amplio rango de comunicación que tiene. Sin embargo, una desventaja significativa de los sistemas acústicos es su baja velocidad de transmisión de datos, por lo tanto, se deben realizar estudios y análisis para mejorar esta desventaja. Teniendo en cuenta que se han propuesto nuevas formas de onda para mejorar el rendimiento de los sistemas de comunicaciones inalámbricas terrestres, este artículo presenta el desarrollo expresiones analíticas generales que permiten la evaluación del rendimiento de la forma de onda de Multiplexación por división de frecuencia generalizada (GFDM) en entornos subacuáticos. Estas expresiones analíticas se obtuvieron considerando un modelo de tiempo continuo para la señal GFDM y modelando el canal de comunicación acústica subacuática como un canal multitrayecto variable en el tiempo. Se obtuvieron resultados numéricos para muchos parámetros diferentes del sistema y del canal, lo que permitió una evaluación cuantitativa de la degradación del rendimiento del sistema.

|Resumen
= 424 veces | HTML (ENGLISH)
= 0 veces| | PDF (ENGLISH)
= 225 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Alexander Hilario-Tacuri, Universidad Nacional de San Agustín de Arequipa

Profesor, Departamento de Ingeniería Electrónica

Leonel Soncco, Universidad Nacional de San Agustín de Arequipa

Profesor, Departamento de Ingeniería Electrónica

Diego Donaires, Universidad Nacional de San Agustín de Arequipa

Estudiante, Departamento de Ingeniería Electrónica

Juan Borja, Universidad Nacional de San Agustín de Arequipa

Profesor, Departamento de Ingeniería Electrónica

Citas

C. Kao and et al, “A study of applications, challenges, and channelmodels on the internet of underwater things,” in IEEE InternationalConference on Applied System Innovation (ICASI), Sapporo, Japan,2017, pp. 1375–1378. [Online]. Available: https://doi.org/10.1109/ICASI.2017.7988162

E. Liou and et al, “Internet of underwater things: Challengesand routing protocols,” in IEEE International Conference on AppliedSystem Invention (ICASI), Chiba, Japan, 2018, pp. 1171–1174.[Online]. Available: https://doi.org/10.1109/ICASI.2018.8394494

S. Premkumardeepak and M. Mukesh, “Intelligent sensor basedmonitoring system for underwater pollution,” in InternationalConference on IoT and Application (ICIOT), Nagapattinam, India, 2017,pp. 1–4. [Online]. Available: https://doi.org/10.1109/ICIOTA.2017.8073626

C. Chiang, “A CMOS seawater salinity to digital converter for IoTapplications of fish farms,” IEEE Transactions on Circuits and SystemsI: Regular Papers, vol. 64, no. 9, pp. 2591–2597, 2017. [Online].Available: https://doi.org/10.1109/TCSI.2017.2686582

C. A. Perez and et al, “Design and deployment of a wireless sensornetwork for the mar menor coastal observation system,” IEEEJournal of Oceanic Engineering, vol. 42, no. 4, pp. 966–976, 2017.[Online]. Available: https://doi.org/10.1109/JOE.2016.2639118

E. Fischell, T. Schneider, and H. Schmidt, “Design, implementation,and characterization of precision timing for bistatic acoustic dataacquisition,” IEEE Journal of Oceanic Engineering, vol. 41, no. 3,pp. 583–591, 2016. [Online]. Available: https://doi.org/10.1109/JOE.2015.2469975

S. M. Maher and et al, “Performance of rf underwatercommunications operating at 433 mhz and 2.4 GHz,” inInternational Conference on Innovative Trends in ComputerEngineering, Egypt, Egypt, 2019, pp. 334–339. [Online]. Available: https://doi.org/10.1109/ITCE.2019.8646491

M. Jouhari and et al, “Underwater wireless sensor networks: Asurvey on enabling technologies, localization protocols, and internetof underwater things,” IEEE Access, vol. 7, pp. 96 879–96 899, 2019.[Online]. Available: https://doi.org/10.1109/ACCESS.2019.2928876

Z. Zeng and et al, “A survey of underwater optical wireless communications,” IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 204–238, 2017. [Online]. Available: https://doi.org/10.1109/COMST.2016.2618841

H. Kaushal and G. Kaddoum, “Underwater optical wirelesscommunication,” IEEE Access, vol. 4, pp. 1518 – 1547, 2016.[Online]. Available: https://doi.org/10.1109/ACCESS.2016.2552538

S. Sendra and et al, “Underwater acoustic modems,” IEEE SensorsJournal, vol. 16, no. 11, pp. 4063–4071, 2016. [Online]. Available:https://doi.org/10.1109/JSEN.2015.2434890

H. S. Dol and et al, “Software-defined underwater acoustic modems:Historical review and the NILUS approach,” IEEE Journal of OceanicEngineering, vol. 42, no. 3, pp. 722–737, 2017. [Online]. Available: https://doi.org/10.1109/JOE.2016.2598412

S. Zhang and et al, “The localization algorithm based on symmetrycorrection for underwater acoustic networks,” IEEE Access, vol. 7,pp. 121 127–121 135, 2019. [Online]. Available: https://doi.org/10.1109/ACCESS.2019.2937106

D. Wang and et al, “Channel-adaptive location-assisted wake-upsignal detection approach based on LFM over underwater acousticchannels,” IEEE Access, vol. 7, pp. 93 806–93 819, 2019. [Online].Available: https://doi.org/10.1109/ACCESS.2019.2926531

Y. Zhou and F. Tong, “Channel estimation basedequalizer for underwater acoustic multiple-input-multiple-outputcommunication,” IEEE Access, vol. 7, pp. 79 005–79 016, 2019.[Online]. Available: https://doi.org/10.1109/ACCESS.2019.2921596

J. Zhou and et al, “Study of propagation channel characteristics forunderwater acoustic communication environments,” IEEE Access,vol. 7, pp. 79 438–79 445, 2019. [Online]. Available: https://doi.org/10.1109/ACCESS.2019.2921808

G. Qiao and et al, “Analysis of snr metrics for a typical underwateracoustic OFDM system,” IEEE Access, vol. 7, pp. 183 565–183 579,2019. [Online]. Available: https://doi.org/10.1109/ACCESS.2019.2960304

J. Li and et al, “Performance analysis for focused beamformers inpassive underwater acoustic localization,” IEEE Access, vol. 6, pp.18 200–18 208, 2018. [Online]. Available: https://doi.org/10.1109/ACCESS.2018.2821766

E. Demirors and et al, “A high-rate software-defined underwateracoustic modem with real-time adaptation capabilities,” IEEEAccess, vol. 6, pp. 18 602–18 615, 2018. [Online]. Available: https://doi.org/10.1109/ACCESS.2018.2815026

Y. Zhou and F. Tong, “Research and development of ahighly reconfigurable OFDM MODEM for shallow water acousticcommunication,” IEEE Access, vol. 7, pp. 123 569–123 582, 2019.[Online]. Available: https://doi.org/10.1109/ACCESS.2019.2936933

R. Jiang and et al, “Deep neural networks for channel estimationin underwater acoustic OFDM systems,” IEEE Access, vol. 7, pp.23 579–23 594, 2019. [Online]. Available: https://doi.org/10.1109/ACCESS.2019.2899990

J. Tao, “DFT-precoded MIMO OFDM underwater acousticcommunications,” IEEE Journal of Oceanic Engineering, vol. 43,no. 3, pp. 805–819, 2018. [Online]. Available: https://doi.org/10.1109/JOE.2017.2735590

I. de Almeida and et al, “5G waveforms for IoT applications,”IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp.2554–25 679, 2019. [Online]. Available: https://doi.org/10.1109/COMST.2019.2910817

Y. Tao and et al, “A survey: Several technologies of non-orthogonaltransmission for 5G,” China Communications, vol. 12, no. 10, pp. 1–15,2019. [Online]. Available: https://doi.org/10.1109/CC.2015.7315054

R. Gerzaguet and et al, “The 5G candidate waveform race: acomparison of complexity and performance,” Journal on WirelessCommunications and Networking, vol. 13, pp. 1–14, 2017. [Online].Available: https://doi.org/10.1186/s13638-016-0792-0

G. Fettweis, M. Krondorf, and S. Bittner, “GFDM - generalizedfrequency division multiplexing,” in IEEE 69th Vehicular TechnologyConference, Barcelona, Spain, 2009, pp. 1–4. [Online]. Available: https://doi.org/10.1109/VETECS.2009.5073571

Z. Na and et al, “Turbo receiver channel estimation for GFDM-Basedcognitive radio networks,” IEEE Access, vol. 6, pp. 9926–9935, 2018.[Online]. Available: https://doi.org/10.1109/ACCESS.2018.2803742

J. Zhong and et al, “Iterative frequency domain equalization forMIMO-GFDM systems,” IEEE Access, vol. 6, pp. 19 386–19 395, 2018.[Online]. Available: https://doi.org/10.1109/ACCESS.2018.2823002

H. Wang and R. Song, “Low complexity ZF receiver design formulti-user GFDMA uplink systems,” IEEE Access, vol. 6, pp.28 661–28 667, 2018. [Online]. Available: https://doi.org/10.1109/ACCESS.2018.2839750

P. Chen, B. Su, and Y. Huang, “Matrix characterization for GFDM: Lowcomplexity MMSE receivers and optimal filters,” IEEE Transactionson Signal Processing, vol. 65, no. 18, pp. 4940–4955, 2017. [Online].Available: https://doi.org/10.1109/TSP.2017.2718971

S. Tiwari and S. S. Das, “Low-complexity joint-MMSE GFDMreceiver,” IEEE Transactions on Communications, vol. 66, no. 4,pp. 1661–1674, 2017. [Online]. Available: https://doi.org/10.1109/TCOMM.2017.2780854

A. Hilario-Tacuri and et al, “Performance evaluation of generalizedfrequency division multiplexing systems over non-linearities withmemory,” IEEE Access, vol. 7, pp. 119 131–119 139, 2019. [Online].Available: https://doi.org/10.1109/ACCESS.2019.2936840

Z. Wang, L. Mei, X. Sha, and V. Leung, “BER analysis of WFRFTprecoded OFDM and GFDM waveforms with an integer time offset,”IEEE Transactions on Vehicular Technology, vol. 67, no. 10, pp.9097–9111, 2018. [Online]. Available: https://doi.org/10.1109/TVT.2018.2855696

Z. Wang, L. Mei, and X. Sha, “BER analysis for GFDM systems withgabor MMSE receiver,” IEEE Communications Letters, vol. 22, no. 11,pp. 2222–2225, 2018. [Online]. Available: https://doi.org/10.1109/LCOMM.2018.2868107

A. Hilario-Tacuri, “A closed-form spectral analysis of GFDM in underwater communication systems,” in 2019 IEEE Latin-AmericanConference on Communications (LATINCOM), Salvador, Brazil,2019, pp. 1–6. [Online]. Available: https://doi.org/10.1109/LATINCOM48065.2019.8937919

M. J. Bocus, A. Doufexi, and D. Agrafiotis, “Performance evaluationof filterbank multicarrier systems in an underwater acousticchannel,” in 27th Annual IEEE International Symposium on Personal,Indoor and Mobile Radio Communications, Valencia, Spain, 2016,pp. 1–6. [Online]. Available: https://doi.org/10.1109/PIMRC.2016.7794717

Y. Liu and et al, “Performance analysis of OFDM over multi-scalemulti-lag channels,” in IEEE 86th Vehicular Technology Conference(VTC-Fall), Toronto, Canada, 2017, pp. 1–5. [Online]. Available: https://doi.org/10.1109/VTCFall.2017.8287943

M. J. Bocus, A. Doufexi, and D. Agrafiotis, “Non-orthogonal multipleaccess (NOMA) for underwater acoustic communication,” in IEEE86th Vehicular Technology Conference (VTC-Fall), Chicago, USA, 2018,pp. 1–5. [Online]. Available: https://doi.org/10.1109/VTCFall.2018.8690996

J. Proakis and M. Salehi, Digital Communications, 5th ed. New York,USA: McGraw-Hill, 2008.

M. Pätzold, Mobile fading channels, 1st ed. New York, USA: JohnWiley & Sons, 2002.

Publicado

2021-07-28

Cómo citar

Hilario-Tacuri, A., Soncco, L., Donaires, D., & Borja, J. (2021). Evaluación analítica de desempeño del GFDM en sistemas de comunicación acústica subacuática. Revista Facultad De Ingeniería Universidad De Antioquia, (104), 20–32. https://doi.org/10.17533/udea.redin.20210741