Análisis y comparación de metal dopado con metal con grafeno-genisteína mediante cálculos QM / MM

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20210634

Palabras clave:

Gap de energía, grafeno decorado, estados de densidad, adsorción

Resumen

La Genisteína (5,7,4’-trihidroxiisoflavona) es una isoflavona abundante en la soya y otras legumbres y actúa como modulador selectivo del receptor de estrógenos. Al probar capacidades similares entre otros flavonoides, se encontró que es un fuerte inhibidor de la topoisomerasa. Al igual que algunos medicamentos de quimioterapia, es muy tóxico para células sanas. Se evaluó la adsorción de genisteína en la superficie de grafeno exclusivo y grafeno dopado con Ni, Ti, Cr y Se mediante la teoría funcional de la densidad. Inicialmente, variamos la posición de genisteína de la superficie del grafeno prístino y decorado cambiando las distancias entre (1-5 Å) y obtuvimos el Ead y Egap. El cálculo indicó que las energías de adsorción (Ead) de genisteína prístina a grafeno con grafeno decorado con Ni, grafeno decorado con Ti y grafeno decorado con Cr y grafeno decorado con Se son: 954.984, 318.168, 797.480, 946.725, 958.154 kcal / mole, y los valores calculados de la energía de adsorción en la distancia de equilibrio (de=3.918OA.) Los datos revelan que el grafeno decorado con genisteína-Ni es la posición más favorable energéticamente. Adicionalmente, explicamos la densidad de estados (Doss) y los orbitales moleculares de frontera HOMO y LUMO para el grafeno decorado con Ni y los complejos con genisteína; se confirmó que podría lograrse una carga positiva de grafeno decorado con Ni para moléculas de nucleófilos.

|Resumen
= 501 veces | HTML (ENGLISH)
= 0 veces| | PDF (ENGLISH)
= 392 veces|

Descargas

Biografía del autor/a

Marziyeh Choupani, Universidad Islámica de Azad

Estudiante de Doctorado, Departamento de Ingeniería Química y Bioingeniería.

Afshar Alihosseini, Universidad Islámica de Azad

Professor Asociado, Departamento de Ingeniería Química y Biotecnología.

Majid Monajjemi, Universidad Islámica de Azad

Profesor, Departamento de Ingeniería Química y Biotecnología.

Hossein Sakhaeinia, Universidad Islámica de Azad

Profesor Asistente, Departamento de Ingeniería Química y Biotecnología.

Citas

A. A. Ganai and H. Farooqi, “Bioactivity of genistein: A review of in vitro and in vivo studies,” Biomedicine & Pharmacotherapy, vol. 76, Dec. 2015. [Online]. Available: https://doi.org/10.1016/j.biopha.2015.10.026

USDA Database for the Isoflavone Content of Selected Foods, Release 2.0. U.S. DEPARTMENT OF AGRICULTURE, USDA. Accessed Jul, 2020. [Online]. Available: t.ly/1FZs

N. Jaiswal, J. Akhtar, S. Prakash, Badruddeen, and F. Ahsan, “An Overview on Genistein and its Various Formulations,” Drug Research, vol. 69, no. 6, Dec. 05 2018. [Online]. Available: https://doi.org/10.1055/a-0797-3657

C. L. Holder, M. I. Churchwell, and D. R. Doerge, “Quantification of Soy Isoflavones, Genistein and Daidzein, and Conjugates in Rat Blood Using LC/ES-MS,” J. Agric. Food Chem., vol. 47, no. 9, Aug. 21 1999. [Online]. Available: https://doi.org/10.1021/jf9902651

J. Markovits and et al., “Inhibitory Effects of the Tyrosine Kinase Inhibitor Genistein on Mammalian DNA Topoisomerase II,” Cancer Research, vol. 49, no. 8, Sep. 15 1989. [Online]. Available: t.ly/b1KT

C. P. Commitee on Toxicity of Chemicals in Food and the Environment, “Phytoestrogens and health,” Food Standards Agency, Holborn, London, Tech. Rep. FSA/0826/0503, May 2003.

M. S. Kurzer, “Phytoestrogen Supplement Use by Women,” The Journal of Nutrition, vol. 133, no. 6, Jun. 01 2003. [Online]. Available: https://doi.org/10.1093/jn/133.6.1983S

S. I. Hua and et al., “Improving the Anti-Tumor Effect of Genistein with a Biocompatible Superparamagnetic Drug Delivery System,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 4, Apr. 2010. [Online]. Available: https://doi.org/10.1166/jnn.2010.1913

I. D. C. César and et al., “Quantitation of genistein and genistin in soy dry extracts by UV-Visible spectrophotometric method,” Química Nova, vol. 31, no. 8, 2008. [Online]. Available: https://doi.org/10.1590/S0100-40422008000800003

H. C. Chang, M. I. Churchwell, K. B. Delclos, R. R. Newbold, and D. R. Doerge, “Mass Spectrometric Determination of Genistein Tissue Distribution in Diet-Exposed Sprague-Dawley Rats,” The Journal of Nutrition, vol. 130, no. 8, Aug. 2000. [Online]. Available: https://doi.org/10.1093/jn/130.8.1963

C. L. Holder, M. I. Churchwell, and D. R. Doerge, “Quantification of Soy Isoflavones, Genistein and Daidzein, and Conjugates in Rat Blood Using LC/ES-MS,” J. Agric. Food Chem., vol. 47, no. 9, Aug. 21 1999. [Online]. Available: https://doi.org/10.1021/jf9902651

V. J. Mohanraj and Y. Chen, “Nanoparticles - A review,” Tropical Journal of Pharmaceutical Research, vol. 5, no. 1, 2006. [Online]. Available: https://doi.org/10.4314/tjpr.v5i1.14634

A. N. Sahu, “Nanotechnology in herbal medicines and cosmetics,” International Journal of Research in Ayurveda and Pharmacy (IJRAP), vol. 4, no. 3, 2013. [Online]. Available: https://doi.org/10.7897/2277-4343.04334

G. Tosi and et al., “Targeting the central nervous system: In vivo experiments with peptide-derivatized nanoparticles loaded with Loperamide and Rhodamine-123,” Journal of Controlled Release, vol. 122, no. 1, Sep. 2007. [Online]. Available: https://doi.org/10.1016/j.jconrel.2007.05.022

G. Barratt, “Colloidal drug carriers: Achievements and perspectives,” Cellular and Molecular Life Sciences CMLS, vol. 60, Jan. 2003. [Online]. Available: https://doi.org/10.1007/s000180300002

S. Srivastava and A. Pandey, “Role of nanotechnology in flavonoid-mediated anticancer therapy,” in Current Aspects of Flavonoids: Their Role in Cancer Treatment, T. H. Singh, Ed. Singapore: Springer, 2019. [Online]. Available: https://doi.org/10.1007/978-981-13-5874-6_8

A. A. Hosseini, “Investigation Property of Propolis in Different Areas of Iran and Its Qualitative and Quantitative Chemical Composition,” Research Journal of Pharmaceutical, Biological and Chemical Sciences, vol. 6, no. 6, Nov.-Dec. 2015. [Online]. Available: http://www.rjpbcs.com/pdf/2015_6(6)/[28].pdf

P. Blake and et al., “Graphene-Based Liquid Crystal Device,” Nano Lett., vol. 8, no. 6, Apr. 30 2008. [Online]. Available: https://doi.org/10.1021/nl080649i

A. K. Geim, “Graphene: Status and Prospects,” Science, vol. 324, no. 5934, Jun. 19 2009. [Online]. Available: https://doi.org/10.1126/science.1158877

M. Kakran and L. Li, “Carbon Nanomaterials for Drug Delivery,” Key Engineering Materials, vol. 508, Mar. 2012. [Online]. Available: https://doi.org/10.4028/www.scientific.net/KEM.508.76

M. Monajjemi, “Liquid-phase exfoliation (LPE) of graphite towards graphene: An ab initio study,” Journal of Molecular Liquids, vol. 30, Mar. 2017. [Online]. Available: https://doi.org/10.1016/j.molliq.2017.01.044

N. Ding, X. Lu, and C. M. L. Wu, “Nitrated tyrosine adsorption on metal-doped graphene: A DFT study,” Computational Materials Science, vol. 51, no. 1, Jan. 2012. [Online]. Available: https://doi.org/10.1016/j.commatsci.2011.07.045

H. P. Zhang, X. G. Luo, X. Y. Lin, X. Lu, and Y. Leng, “Density functional theory calculations of hydrogen adsorption on Ti-, Zn-, Zr-, Al-, and N-doped and intrinsic graphene sheets,” International Journal of Hydrogen Energy, vol. 38, no. 33, Nov. 4 2013. [Online]. Available: https://doi.org/10.1016/j.ijhydene.2013.07.098

N. Shadmani, M. Monajjemi, and K. Zare, “Adsorption of Microporous Silica Material (mcm-41) on Graphene Sheet as a Nano-Carrier,” Journal of Computational and Theoretical Nanoscience, vol. 13, no. 1, Jan. 2016. [Online]. Available: https://doi.org/10.1166/jctn.2016.4816

A. S. Rad, “Density functional theory study of the adsorption of MeOH and EtOH on the surface of Pt-decorated graphene,” Physica E: Low-dimensional Systems and Nanostructures, vol. 83, 2016. [Online]. Available: https://doi.org/10.1166/jctn.2016.4816

A. S. Rad, A. Shadravan, A. A. Soleymani, and N. Motaghedi, “Lewis acid-base surface interaction of some boron compounds with N-doped graphene; first principles study,” Current Applied Physics, vol. 15, no. 10, Oct. 2015. [Online]. Available: https://doi.org/10.1016/j.cap.2015.07.018

A. S. Rad, “First principles study of Al-doped graphene as nanostructure adsorbent for NO2 and N2O: DFT calculations,” Applied Surface Science, vol. 357, Dec. 01 2015. [Online]. Available: https://doi.org/10.1016/j.apsusc.2015.09.168

M. Monajjemi, A. Alihosseini, and F. Naghsh, “How Does Stathmin Destabilize Microtubules? A Root of Consciousness and Alzheimer’s Disease,” Biomedical Journal of Scientific & Technical Research, vol. 1, no. 5, Oct. 16 2017. [Online]. Available: https://doi.org/10.26717/BJSTR.2017.01.000442

T. Lu and F. Chen, “Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm,” Journal of Molecular Graphics and Modelling, vol. 38, Sep. 2012. [Online]. Available: https://doi.org/10.1016/j.jmgm.2012.07.004

T. Lu and F. Chen, “Multiwfn: A multifunctional wavefunction analyzer,” Journal of Computational Chemistry, Dec. 08 2011. [Online]. Available: https://doi.org/10.1002/jcc.22885

S. S. Li, Semiconductor Physical Electronics, 1st ed. New York, NY: Springer, 1993. [Online]. Available: https://doi.org/10.1007/978-1-4613-0489-0

F. Karimi, “Nanostructure Based-materials: A New Approach in Engineering and Biological Application,” Current Biochemical Engineering, vol. 6, no. 2, 2020. [Online]. Available: https://doi.org/10.2174/221271190602200622121814

F. Karimi, N. Zakariae, R. Esmaeili, M. Alizadeh, and A. M. Tamadon, “Carbon Nanotubes for Amplification of Electrochemical Signal in Drug and Food Analysis; A Mini Review,” Current Biochemical Engineering, vol. 6, no. 2, 2020. [Online]. Available: https://doi.org/10.2174/2212711906666200224110404

R. Bala and A. Marwaha, “Investigation of graphene based miniaturized terahertz antenna for novel substrate materials,” Engineering Science and Technology, an International Journal, vol. 19, no. 1, Mar. 2016. [Online]. Available: https://doi.org/10.1016/j.jestch.2015.08.004

M. Y. Akram and et al., “N-doped reduced graphene oxide decorated with Fe3O4 composite: Stable and magnetically separable adsorbent solution for high performance phosphate removal,” Journal of Environmental Chemical Engineering, vol. 7, no. 3, Jun. 2019. [Online]. Available: https://doi.org/10.1016/j.jece.2019.103137

S. Gholami, A. S. Rad, A. Heydarinasab, and M. Ardjmand, “Adsorption of adenine on the surface of nickel-decorated graphene; A DFT study,” Journal of Alloys and Compounds, vol. 686, Nov. 25 2016. [Online]. Available: https://doi.org/10.1016/j.jallcom.2016.06.097

Publicado

2021-06-15 — Actualizado el 2021-06-15

Cómo citar

Choupani, M., Alihosseini, A., Monajjemi, M., & Sakhaeinia, H. (2021). Análisis y comparación de metal dopado con metal con grafeno-genisteína mediante cálculos QM / MM. Revista Facultad De Ingeniería Universidad De Antioquia, (103), 164–174. https://doi.org/10.17533/udea.redin.20210634
Crossref
1
Scopus
0
Marziyeh Choupani, Afshar Alihosseini, Majid Monajjemi, Hossein Sakhaeinia (2022)
Theoretical Study of Adsorption of Genistein on Graphene and Graphene Doped with Metal Atoms (Ni, Ti, Cr, Se). journal of ilam university of medical sciences, 30(4), 94.
10.52547/sjimu.30.4.94