Validation of a chromatographic method and its use in the determination of sulphates in the products of atmospheric corrosion of zinc exposed to SO2 and NO2

  • Paula Andrea Montoya Zuluaga Universidad de Antioquia
  • Juan Guillermo Castaño Gonzalez Universidad de Antioquia
Keywords: zinc, atmospheric corrosion, SEM/EDX, ion chromatography, SO2, NO2, methods validation


The role of SO2 and NO2 in the atmospheric corrosion of zinc was studied by determining sulphates as the main products of corrosion when this metal is exposed to atmospheres containing SO2 and NO2. Scanning Electron Microscopy (SEM/EDX) and Ion Exchange Chromatography (IC) were used as instrumental techniques. The former was used to establish the morphology and the elementary qualitative determination of corrosion products, and the latter to quantify sulphates. Before conducting the chromatographic analyses a series of parameters such as selectivity, linearity, precision, accuracy, limit of quantification, and detection limit, were evaluated to validate the method and to have the statistical certainty of its utility in the sulphate quantification. The results showed that when the metal is exposed to an atmosphere containing SO2 and NO2, the sulphate formation increases with exposure time. A synergetic effect of both polluting agents on sulphate formation was found with respect to the sulphate formation in atmospheres containing only SO2.

= 18 veces | PDF (ESPAÑOL (ESPAÑA))
= 17 veces|


Download data is not yet available.

Author Biographies

Paula Andrea Montoya Zuluaga, Universidad de Antioquia

Grupo de Corrosión y Protección. Departamento de Ingeniería de Materiales

Juan Guillermo Castaño Gonzalez, Universidad de Antioquia

Grupo de Corrosión y Protección. Departamento de Ingeniería de Materiales


Zhang, Xiaoge G. Corrosion and Electrochemistry of Zinc. New York. Plenum Press. 1996. pp. 241-278.

Odnevall, I. y C. Leygraf. Atmospheric Corrosion, STP 1239. Ed. Kirk, W. W. y Lawson, H. Philadelphia. ASTM. 1995. pp. 215-229.

UN/ECE International Cooperative Programme on Effects on Materials Including Historic and Cultural Monuments. Progress Report. Stockholm. UN/ECE. 1994.

Tidblad, Johan et al. “Final dose-response functions and trend analysis from the UN-ECE project on the effects of acid deposition”. En: Proceedings 14th International Corrosion Congress, South Africa, paper 337.1. 1999.

Svensson, J.-E. and L. G. Johansson. “A laboratory study of the initial stages of the atmospheric corrosion of zinc in the presence of NaCl; Influence of SO2 and NO2”. En: Corrosion Science. Vol. 34. N.º 5. 1993. p. 721.

Castaño, Juan G. et al. “Nitrogen dioxide effect on atmospheric corrosion of zinc exposed in climate chamber”. En: Proceedings 15th International Corrosion Congress, Granada, Paper 018. 2002.

Mansfeld, F. et al. “A New atmospheric corrosion rate monitor-development and evaluation”. En: Atmospheric Environment. Vol. 20. N.º 6. 1986. p. 1179.

Oesch, S. and M. Faller. “Environmental effects on materials: The effect of the air pollutants SO2, NO2, NO and O3 on the corrosion of copper, zinc and aluminium. A short literature survey and results of laboratory exposures”. En: Corrosion Science. Vol. 39. N.º 9. 1997. p. 1505.

Wood, R. “How to validate analytical methods”. En: Trends in Analytical Chemistry. Vol. 18. No. 9-10. 1999. pp. 624-632.

Hokanson, G. “A life cycle approach to the validation of analytical methods during Pharmaceutical product development, part II: changes and need for additional validation”. En: Pharmaceutical Technology. Septiembre de 1994. pp. 118-130.

Weed, D. “A statistically integrated approach to analytical method validation”. En: Pharmaceutical Technology. Octubre de 1999. pp. 116-129.

Valcárcel, M. et al. “Selectivity in analytical chemistry revisited”. En: Trends in Analytical Chemistry. Vol. 20. N.º 8. 2001. pp. 386-393.

Aboul-Enein, H. “Selectivity versus specificity in chromatographic analytical methods”. En: Accred Quality Assurance. Vol. 5. 2000. pp. 180-181.

Zoonen P. et al. “Some practical examples of method validation in the analytical laboratory”. En: Trends in Analytical Chemistry. Vol. 18. N.º 9-10. 1999. pp. 584-593.

Liao, J. “An insight into linear calibration: univariate case”. En: Statistics & Probability Letters, Vol. 56. N.º 3. 2002. pp. 271-281.

Almeida, A. M. et al. “Linear regression for calibration lines revisited: weighting schemes for bioanalytical methods”. En: Journal of Chromatography B. Vol. 774. 2002. pp. 215-22.

Loco, J. et al. “Linearity of calibration curves: use and misuse of the correlation coefficient”. En: Accred Quality Assurance. Vol. 7. 2002. pp. 281-285.

Aguirre, L. et al. Validación de métodos analíticos. Barcelona. AEFI. 2001. pp. 249-314.

Geiss, S. and J. W. Einax. “Comparison of detection limits in environmental analysis —is it possible? An approach on quality assurance in the lower working range by verification”. En: Fresenius Journal of Analytical Chemistry. Vol. 370. 2001. pp. 673-678.

Currie, Ll. “Detection and quantification limits: origins and historical overview”. En: Analytica Chimica Acta. Vol. 391. N.º 2. 1999. pp. 127-134.

Castaño, Juan G. “Efecto del NO2 en la corrosión atmosférica del zinc”. Tesis doctoral. Universidad Complutense. Madrid. 2002. pp. 103-113.

ISO 8407: “Metals and alloys–procedures for removel of corrosion products from corrosion test specimens”. International Organization for Standarization. Geneva. 1985.

Montoya, Paula. “Validación de un método cromatográfico para la determinación de sulfatos en productos de corrosión atmosférica del zinc expuesto en ambientes de SO2 y NO2”. Tesis de Grado. Instituto de Química. Facultad de Ciencias Exactas y Naturales. Universidad de Antioquia. Medellín. 2003.

How to Cite
Montoya Zuluaga P. A., & Castaño Gonzalez J. G. (2005). Validation of a chromatographic method and its use in the determination of sulphates in the products of atmospheric corrosion of zinc exposed to SO2 and NO2. Revista Facultad De Ingeniería Universidad De Antioquia, (33), 84-96. Retrieved from