La climatología colombiana en modelos CMIP5/CMIP6: Sesgos persistentes y mejoras

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20210525

Palabras clave:

Colombia, cambio climático, CMIP5, CMIP6, modelos de circulación general

Resumen

El norte de Suramérica es una de las regiones más vulnerables ante cambio climático. Los Modelos de Circulación General (MCG) son las herramientas más empleadas para identificar los posibles impactos del cambio climático. Los MCG proveen información útil, aunque presentan sesgos sistemáticos, principalmente en zonas de topografía compleja. Se evalúa la habilidad de los modelos de la quinta y sexta fase del Proyecto de Comparación de Modelos Acoplados (CMIP) para representar el ciclo anual de precipitación y temperatura superficial del aire en Colombia.  Se consideran diferentes bases de datos, incluyendo estaciones in situ del Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). Los modelos de última generación (CMIP6) mejoran su desempeño con respecto a los modelos de la generación anterior (CMIP5), aunque siguen presentando sesgos sistemáticos como dificultades para representar la Zona de Convergencia Intertropical y procesos que dependen de la elevación, fundamentales para el comportamiento intra-anual de la precipitación y la temperatura en Colombia.  Los modelos CMIP6 presentan mayores sesgos simulando la temperatura sobre los Andes Colombianos que los modelos CMIP5.  Las proyecciones climáticas para finales del siglo XXI considerando los escenarios de mayores emisiones de gases de efecto invernadero sugieren condiciones futuras más cálidas y cambios mixtos de precipitación en Colombia, con reducciones de precipitación en el Orinoco y el Amazonas Colombiano en septiembre-noviembre, e incrementos en el este del Pacífico ecuatorial durante todo el año.

|Resumen
= 3465 veces | PDF (ENGLISH)
= 1311 veces| | HTML (ENGLISH)
= 0 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Paola A. Arias, Universidad de Antioquia

Profesora, Escuela Ambiental.

Geusep Ortega, Universidad de Antioquia

Profesor, Escuela Ambiental.

Laura D. Villegas, Universidad de Antioquia

Estudiante, Escuela Ambiental.

J. Alejandro Martínez, Universidad de Antioquia

Profesor, Escuela Ambiental.

Citas

IPCC, “Summary for policymakers,” in Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, V. Masson-Delmotte and et al., Eds. In Press, 2018.

R. Pachauri and et al., Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, R. Pachauri and L. Meyer, Eds. Intergovernmental Panel on Climate Change, 2014.

G. O. Magrin and et al., “Central and South America,” in Climate Change 2014: Impacts, Adaptation and Vulnerability: Part B: Regional Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2014, pp. 1499–1566.

IPCC, “Summary for policymakers,” in Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, P. Shukla and et al., Eds, 2019.

CEPAL. (2018, Ago. 30,) Climate change in Central America: Potential impacts and public policy options. [Online]. Available: https://repositorio.cepal.org/handle/11362/39150

I. Camilloni and et al., “Floods and droughts,” in Adaptation to Climate Change Risks in Ibero-American Countries — RIOCCADAPT Report, J. Moreno and et al., Eds. McGraw Hill, 2020, pp. 371–396.

G. Flato and et al., “Random patterns,” in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. Stocker and et al., Eds. Cambridge University Press, 2013, pp. 743–866.

G. Meehl and et al., “Intercomparison makes for a better climate model,” EOS, vol. 78, no. 41, Oct. 14, 1997. [Online]. Available: https://doi.org/10.1029/97EO00276

K. Taylor, R. Stouffer, and G. Meehl, “An overview of CMIP5 and the experiment design,” Bulletin of the American Meteorological Society, vol. 93, no. 4, Abr. 1, 2012. [Online]. Available: https://doi.org/10.1175/BAMS-D-11-00094.1

V. Eyring, “Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization,” Geoscientific Model Development, vol. 9, no. 5, May. 26, 2016. [Online]. Available: https://doi.org/10.5194/gmd-9-1937-2016

N. Hirota and Y. N. Takayabu, “Reproducibility of precipitation distribution over the tropical oceans in CMIP5 multi-climate models compared to CMIP3,” Climate Dynamics, vol. 41, Jun. 18, 2013. [Online]. Available: https://doi.org/10.1007/s00382-013-1839-0

Y. Kim, S. K. Min, X. Zhang, J. Sillmann, and M. Sandstad, “Evaluation of the CMIP6 multi-model ensemble for climate extreme indices,” Weather and Climate Extremes, vol. 29, Sep. 2020. [Online]. Available: https://doi.org/10.1016/j.wace.2020.100269

B. Tian and X. Dong, “The Doublé-ITCZ bias in CMIP3, CMIP5, and CMIP6 models based on annual mean precipitation,” Geophysical Research Letters, vol. 47, no. 8, Mar. 28, 2020. [Online]. Available: https://doi.org/10.1029/2020GL087232

Y. Zhu, R. Zhang, and J. Sun, “North Pacific upper-ocean cold temperature biases in CMIP6 simulations and the role of regional vertical mixing,” Journal of Climate, vol. 33, no. 17, Jul. 29, 2020. [Online]. Available: https://doi.org/10.1175/JCLI-D-19-0654.1

L. Yin, R. Fu, E. Shevliakova, and R. E. Dickinson, “How well can CMIP 5 simulate precipitation and its controlling processes over tropical South America?” Climate Dynamics, vol. 41, Dic. 2013. [Online]. Available: https://doi.org/10.1007/s00382-012-1582-y

R. Palomino-Lemus, S. Córdoba-Machado, S. R. Gamiz-Fortis, Y. Castro-Díez, and M. J. Esteban-Parra, “Summer precipitation projections over northwestern South America from CMIP5 models,” Global and Planetary Change, vol. 131, Ago. 2015. [Online]. Available: https://doi.org/10.1016/j.gloplacha.2015.05.004

J. P. Sierra, P. A. Arias, and S. C. Vieira, “Precipitation over northern South America and its seasonal variability as simulated by the CMIP5 models,” Advances in Meteorology, vol. 2015, Ene. 19, 2015. [Online]. Available: https://doi.org/10.1155/2015/634720

C. Bonilla-Ovallos and O. M. Sánchez, “Validación de la precipitación estimada por modelos climáticos acoplados del proyecto de intercomparación CMIP5 en Colombia,” Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, vol. 41, no. 158, Mar. 31, 2017. [Online]. Available: https://doi.org/10.18257/raccefyn.427

J. D. Pabón-Caicedo and et al., “Observed and projected hydroclimate changes in the Andes,” Frontiers in Earth Science, vol. 8, Mar. 17, 2020. [Online]. Available: https://doi.org/10.3389/feart.2020.00061

G. Ortega and et al., “Present-day and future climate over Central and South America according to CMIP5/CMIP6 models,” International Journal of Climatology, [Online]. Available: https://doi.org/10.1002/joc.7221.

Y. T. Hwang and D. M. Frierson, “Link between the double-intertropical convergence zone problem and cloud biases over the southern ocean,” Proccedings of the National Academy of Sciences of the United States of America, vol. 110, no. 13, Mar. 26, 2013. [Online]. Available: https://doi.org/10.1073/pnas.1213302110

M. D. Zelinka and et al., “Causes of higher climate sensitivity in CMIP6 models,” Geophysical Research Letters, vol. 47, no. 1, Ene. 3, 2020. [Online]. Available: https://doi.org/10.1029/2019GL085782

G. Poveda, P. R. Waylen, and R. S. Pulwarty, “Annual and inter-annual variability of the present climate in northern South America and southern Meso America,” Palaeogeography,

Palaeoclimatology, Palaeoecology, vol. 234, no. 1, May. 3, 2006. [Online]. Available: https://doi.org/10.1016/j.palaeo.2005.10.031

J. C. Espinoza and et al., “Hydroclimate of the Andes Part I: Main climatic features,” Frontiers in Earth Science, vol. 8, Mar. 20, 2020. [Online]. Available: https://doi.org/10.3389/feart.2020.00064

P. A. Arias and et al., “Hydroclimate of the Andes Part II: Hydroclimate variability and sub-continental patterns,” Frontiers in Earth Science, vol. 8, Feb. 18, 2021. [Online]. Available: https://doi.org/10.3389/feart.2020.505467

G. Poveda, “La hidroclimatología de Colombia: Una síntesis desde la escala inter-decadal hasta la escala diurna,” Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, vol. 28, no. 107, Jun. 2004. [Online]. Available: https://bit.ly/3gpQlS5

G. Poveda and et al., “The diurnal cycle of precipitation in the tropical Andes of Colombia,” Monthly Weather Review, vol. 133, no. 1, Ene. 1, 2005. [Online]. Available: https://doi.org/10.1175/MWR-2853.1

L. Jaramillo, G. Poveda, and J. F. Mejía, “Mesoscale convective systems and other precipitation features over the tropical Americas and surrounding seas as seen by TRMM,” International Journal Of Climatology, vol. 37, no. S1, Feb. 15, 2017. [Online]. Available: https://doi.org/10.1002/joc.5009

O. D. Álvarez-Villa, J. I. Vélez, and G. Poveda, “Improved long-term mean annual rainfall fields for Colombia,” International Journal Of Climatology, vol. 31, no. 14, Nov. 30, 2011. [Online]. Available: https://doi.org/10.1002/joc.2232

J. M. Bedoya-Soto, E. Aristizábal, A. M. Carmona, and G. Poveda, “Seasonal shift of the diurnal cycle of rainfall over Medellin’s valley, central andes of Colombia (1998–2005),” Frontiers in Earth Science, vol. 7, May. 16, 2019. [Online]. Available: https://doi.org/10.3389/feart.2019.00092

J. F. Mejia and et al., “Distribución espacial y ciclos anual y semianual de la precipitación en Colombia,” DYNA, no. 127, Ago. 1999. [Online]. Available: https://bit.ly/32ySPWa

G. Poveda and O. Mesa, “La corriente de chorro superficial del oeste (“del chocó”) y otras dos corrientes de chorro en Colombia: Climatología y variabilidad durante las fases del ENSO,” Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, vol. 28, no. 89, Dic. 1999. [Online]. Available: https://bit.ly/3amXq24

G. Poveda and O. Mesa, “On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean-land-atmosphere interaction by a low-level jet,” Geophysical Research Letters, vol. 27, no. 11, Jun. 1, 2000. [Online]. Available: https://doi.org/10.1029/1999GL006091

J. P. Sierra, P. A. Arias, S. C. Vieira, and J. Agudelo, “How well do CMIP5 models simulate the low-level jet in western Colombia?” Climate Dynamics, vol. 51, Sep. 2018. [Online]. Available: https://doi.org/10.1007/s00382-017-4010-5

J. Yepes, G. Poveda, J. F. Mejía, L. Moreno, and C. Rueda, “Choco-Jex: A research experiment focused on the Chocó low-level jet over the far eastern Pacific and western Colombia,” Bulletin of the American Meteorological Society, vol. 100, no. 5, May. 1, 2019.

[Online]. Available: https://doi.org/10.1175/BAMS-D-18-0045.1

E. R. Torrealba and J. A. Amador, “La corriente en chorro de bajo nivel sobre los Llanos Venezolanos de Sur América,” Revista de Climatología, vol. 10, Ene. 23, 2010. [Online]. Available: https://bit.ly/3ngE97X

G. Jiménez-Sánchez, P. M. Markowski, V. Jewtoukoff, G. S. Young, and D. L. Stensrud, “The Orinoco low-level jet: An investigation of its characteristics and evolution using the WRF model,” Journal of Geophysical Research: Atmospheres, vol. 124, no. 20, Oct. 27, 2019. [Online]. Available: https://doi.org/10.1029/2019JD030934

J. A. Amador, “A climate feature of the tropical Americas: The trade wind easterly jet,” Top. Meteor. Oceanogr, vol. 5, no. 2, Jun. 16, 1998. [Online]. Available: https://bit.ly/2QmVShE

J. A. Amador, “The intra-Americas sea low-level jet,” Annals of the New York Academy of Sciences, vol. 1146, no. 1, Dec. 5, 2008. [Online]. Available: https://doi.org/10.1196/annals.1446.012

M. D. Zuluaga and R. A. Houze, “Extreme convection of the near-equatorial Americas, Africa, and adjoining oceans as seen by TRMM,” Monthly Weather Review, vol. 143, no. 1, Ene. 1, 2015. [Online]. Available: https://doi.org/10.1175/MWR-D-14-00109.1

M. Semilof and et al., “Diagnóstico de sistemas convectivos de mesoescala sobre Colombia y el océano Pacífico oriental durante 1998-2002,” Avances en Recursos Hidráulicos, no. 11, Sep. 17, 2004. [Online]. Available: https://revistas.unal.edu.co/index.php/arh/article/view/93075

J. F. Mejía and G. Poveda, “Ambientes atmosféricos de sistemas convectivos de mesoescala sobre Colombia durante 1998 según la TRMM y el re-análisis NCEP/NCAR,” Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales, vol. 29, no. 113, Dic. 3, 2005. [Online]. Available: https://bit.ly/2QatsaR

M. S. Sakamoto, T. Ambrizzi, and G. Poveda, “Moisture sources and life cycle of convective systems over western Colombia,” Advances in Meteorology, vol. 2011, Dic. 8, 2011. [Online]. Available: https://doi.org/10.1155/2011/890759

G. Poveda and et al., “High impact weather events in the Andes,” Frontiers in Earth Science, vol. 8, May. 29, 2020. [Online]. Available: https://doi.org/10.3389/feart.2020.00162.

G. Leo, J. Zea, and J. Eslava, “Ondas del este en Colombiay algunos aspectos relevantes de los ciclones tropicales,” Meteorología Colombiana, no. 3, Mar. 2001. [Online]. Available: https://bit.ly/3grMPqA

C. Dominguez, J. M. Done, and C. L. Bruyère, “Easterly wave contributions to seasonal rainfall over the tropical Americas in observations and a regional climate model,” Climate Dynamics, vol. 54, Ene. 2020. [Online]. Available: https://doi.org/10.1007/s00382-019-04996-7

S. Giraldo-Cárdenas and et al., “Easterly waves and precipitation over northern South America and the Caribbean,” in revision.

G. Poveda, L. Jaramillo, and L. F. Vallejo, “Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers,” Water Resources Research, vol. 50, no. 1, Ene. 2014. [Online]. Available: https://doi.org/10.1002/2013WR014087

P. A. Arias, J. A. Martínez, and S. C. Vieira, “Moisture sources to the 2010–2012 anomalous wet season in northern South America,” Climate Dynamics, vol. 45, Feb. 10, 2015. [Online]. Available: https://doi.org/10.1007/s00382-015-2511-7

A. M. Durán-Quesada, L. Gimeno, and J. Amador, “Role of moisture transport for Central American precipitation,” Earth System Dynamics, vol. 8, no. 1, Feb. 28, 2017. [Online]. Available: https://doi.org/10.5194/esd-8-147-2017,2017.

I. Hoyos and et al., “Moisture origin and transport processes in Colombia, northern South America,” Climate Dynamics, vol. 50, Feb. 2018. [Online]. Available: https://doi.org/10.1007/s00382-017-3653-6

G. Poveda, D. M. Álvarez, and O. A. Ruda, “Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots,” Climate Dynamics, vol. 36, Jun. 2011. [Online]. Available: https://doi.org/10.1007/s00382-010-0931-y

G. Poveda, A. Jaramillo, M. M. Gil, N. Quiceno, and R. I. Mantilla, “Seasonally in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia,” Water Resources Research, vol. 37, no. 8, Ago. 1, 2001. [Online]. Available: https://doi.org/10.1029/2000WR900395

J. M. Bedoya-Soto, G. Poveda, K. E. Trenberth, and J. J. Vélez-Upegui, “Interannual hydroclimatic variability and the 2009–2011 extreme ENSO phases in Colombia: from Andean glaciers to Caribbean lowlands,” Theoretical and Applied Climatology, vol. 135, Feb. 15, 2019. [Online]. Available: https://doi.org/10.1007/s00704-018-2452-2

E. Navarro-Monterroza, P. A. Arias, and S. C. Vieira, “El Niño/Southern Oscillation Modoki and its effects on the spatiotemporal variability of precipitation in Colombia,” Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, vol. 43, no. 166, 2019. [Online]. Available: https://doi.org/10.18257/raccefyn.704.

L. M. Serna, P. A. Arias, and S. C. Vieira, “Las corrientes superficiales de chorro del Chocó y el Caribe durante los eventos de El Niño y El Niño modoki,” Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, vol. 42, no. 165, Dic. 26, 2018. [Online]. Available: https://doi.org/10.18257/raccefyn.705

J. S. Morales, P. A. Arias, J. A. Martínez, and A. M. D. . Quesada, “The role of low-level circulation on water vapour transport to central and northern South America: Insights from a 2d lagrangian approach,” International Journal of Climatology, vol. 41, no. S1, Oct. 9, 2020. [Online]. Available: https://doi.org/10.1002/joc.6873

W. Cai and et al., “Climate impacts of the El Niño–Southern Oscillation on South America,” Nature Reviews Earth & Environment, vol. 1, Abr. 20, 2020. [Online]. Available: https://doi.org/10.1038/s43017-020-0040-3

G. J. Huffman and et al., “The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales,” Journal of Hydrometeorology, vol. 8, no. 1, Feb. 1, 2007. [Online]. Available: https://doi.org/10.1175/JHM560.1

A. Meyer-Christoffer and et al. (2011) GPCC climatology version 2011 at 0.25°: Monthly land-surface precipitation climatology for every month and the total year from rain-gauges built on GTS-based and historic data. GPCC Climatology. [Online]. Available: https://bit.ly/3tHNGah

R. F. Adler and et al., “The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present),” Journal of Hydrometeorology, vol. 4, no. 6, Dic. 1, 2004. [Online]. Available: https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2

P. Xie and P. A. Arkin, “Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs,” Bulletin of the American Meteorological Society, vol. 78, no. 11, Nov. 1, 1997. [Online]. Available: https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2

C. Funk and et al., “The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes,” Scientific Data, vol. 2, Dic. 8, 2015. [Online]. Available: https://doi.org/10.1038/sdata.2015.66

S. Saha and et al., “The NCEP climate forecast system reanalysis,” Bulletin of the American Meteorological Society, vol. 91, no. 8, Ago. 1, 2010. [Online]. Available: https://doi.org/10.1175/2010BAMS3001.1

M. Semilof and et al., “The ERA5 global reanalysis,” Quarterly Journal of the Royal Meteorological Society, vol. 146, no. 730, May. 17, 2020. [Online]. Available: https://doi.org/10.1002/qj.3803

D. P. Dee and et al., “The ERA-Interim reanalysis: configuration and performance of the data assimilation system,” Quarterly Journal of the Royal Meteorological Society, vol. 137, no. 656, Abr. 28, 2011. [Online]. Available: https://doi.org/10.1002/qj.828

H. Ashouri and et al., “PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies,” Bulletin of the American Meteorological Society, vol. 96, no. 1, Ene. 1, 2015. [Online]. Available: https://doi.org/10.1175/BAMS-D-13-00068.1

C. P. Morice, J. J. Kennedy, N. A. Rayner, and P. D. Jones, “Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The

HADCRUT4 data set,” Journal of Geophysical Research: Atmospheres, vol. 117, no. D8, Abr. 17, 2012. [Online]. Available: https://doi.org/10.1029/2011JD017187

R. Rhode and et al., “A new estimate of the average earth surface land temperature spanning 1753 to 2011,” Geoinfor Geostat An Overview, vol. 1, no. 1, Dic. 7, 2012. [Online]. Available: http://dx.doi.org/10.4172/2327-4581.1000101

R. Gelaro and et al., “The modern-era retrospective analysis for research and applications, version 2 (merra-2),” Journal of Climate, vol. 30, no. 14, Jul. 15, 2017. [Online]. Available: https://doi.org/10.1175/JCLI-D-16-0758.1

D. R. Legates and C. J. Willmott, “Mean seasonal and spatial variability in gauge-corrected, global precipitation,” International Journal of Climatology, vol. 10, no. 2, Mar. 1990. [Online]. Available: https://doi.org/10.1002/joc.3370100202

K. Riahi and et al., “Rcp 8.5—a scenario of comparatively high greenhouse gas emissions,” Climatic Change, vol. 109, Ago. 13, 2011. [Online]. Available: https://doi.org/10.1007/s10584-011-0149-y

B. C. O’Neill and et al., “The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6,” Geoscientific Model Development, vol. 9, no. 9, Sep. 28, 2016. [Online]. Available: https://doi.org/10.5194/gmd-9-3461-2016

R. Moss and et al., “The next generation of scenarios for climate change research and assessment,” Communications Week, vol. 463, Feb. 11, 2010. [Online]. Available: https://doi.org/10.1038/nature08823

B. O’Neill and et al., “The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century,” Global Environmental Change, vol. 42, Sep. 2017. [Online]. Available: https://doi.org/10.1016/j.gloenvcha.2015.01.004

E. Kriegler and et al., “Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century,” Global Environmental Change, vol. 42, Ene. 2017. [Online]. Available: https://doi.org/10.1016/j.gloenvcha.2016.05.015

F. Giorgi, C. Jones, and G. R. Asrar, “Addressing climate information needs at the regional level: the CORDEX framework,” WMO Bulletin, vol. 58, no. 3, Jul. 2009. [Online]. Available: http://wcrp.ipsl.jussieu.fr/cordex/documents/CORDEX_giorgi_WMO.pdf

K. E. Taylor, “Summarizing multiple aspects of model performance in a single diagram,” Journal of Geophysical Research: Atmospheres, vol. 106, no. D7, Abr. 1, 2001. [Online]. Available: https://doi.org/10.1029/2000JD900719

S. Hempel, K. Frieler, L. Warszawski, J. Schewe, and F. Piontek, “A trend-preserving bias correction – the ISI-MIP approach,” Earth System Dynamics, vol. 4, no. 2, Jul. 31, 2013. [Online]. Available: https://doi.org/10.5194/esd-4-219-2013

J. P. Sierra and et al., “The Choco low-level jet: past, present and future,” Climate Dynamics, vol. 56, no. 3, Ene. 20, 2021. [Online]. Available: https://doi.org/10.1007/s00382-020-05611-w

S. M. Vallejo-Bernal and et al., “Ground validation of TRMM 3B43 V7 precipitation estimates over Colombia. Part I: Monthly and seasonal timescales,” International Journal of Climatology, vol. 41, no. 1, May. 14, 2020. [Online]. Available: https://doi.org/10.1002/joc.6640

C. Navarro-Racines, J. Tarapues, P. Thornton, A. Jarvis, and J. Ramirez-Villegas, “High-resolution and bias-corrected CMIP5 projections for climate change impact assessments,” Scientific Data, vol. 7, Ene. 20, 2020. [Online]. Available: https://doi.org/10.1038/s41597-019-0343-8

J. D. Pabón, “Cambio climático en Colombia: tendencias en la segunda mitad del siglo XX y escenarios posibles para el siglo XXI,” Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, vol. 36, no. 139, Jun. 2012. [Online]. Available:

http://www.scielo.org.co/pdf/racefn/v36n139/v36n139a10.pdf

O. D. Molina and C. Bernhofer, “Projected climate changes in four different regions in Colombia,” Environmental Systems Research, vol. 8, no. 1, Nov. 18, 2019. [Online]. Available: https://doi.org/10.1186/s40068-019-0161-1

IDAM and PNUD, Resumen ejecutivo Tercera Comunicación Nacional de Colombiaa la Convención Marco de las Naciones Unidas sobre Cambio Climático (CMNUCC). Bogotá DC, Colombia: Tercera Comunicación Nacional de Cambio Climático, 2017.

R. Palomino-Lemus, S. Córdoba-Machado, S. R. Gámiz-Fortis, Y. Castro-Díez, and M. J. Esteban-Parra, “Climate change projections of boreal summer precipitation over tropical America by using statistical downscaling from CMIP5 models,” Environmental Research Letters, vol. 12, no. 12, Dic. 15, 2017. [Online]. Available: https://iopscience.iop.org/article/10.1088/1748-9326/aa9bf7/meta

S. A. Solman, “Regional climate modeling over South America: A review,” Advances in Meteorology, vol. 2013, Jul. 15, 2013. [Online]. Available: https://doi.org/10.1155/2013/504357

J. P. Boulanger, A. F. Carril, and E. Sánchez, “Claris-La Plata basin: regional hydroclimate variability, uncertainties and climate change scenarios,” Climate Research, vol. 68, no. 2-3, May. 4, 2016. [Online]. Available: https://doi.org/10.3354/cr01392

S. A. Solman and J. Blazquez, “Multiscale precipitation variability over South America: Analysis of the added value of CORDEX RCM simulations,” Climate Dynamics, vol. 53, Feb. 20, 2019. [Online]. Available: https://doi.org/10.1007/s00382-019-04689-1

J. A. Marengo and et al., “Development of regional future climate change scenarios in south America using the Eta CPTEC/HADCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná river basins,” Climate Dynamics, vol. 38, May. 2012. [Online]. Available: https://doi.org/10.1007/s00382-011-1155-5

S. C. Chou and et al., “Assessment of climate change over South America under RCP 4.5 and 8.5 downscaling scenarios,” American Journal of Climate Change, vol. 3, no. 5, Nov. 27, 2014. [Online]. Available: https://doi.org/10.4236/ajcc.2014.35043

E. Sánchez and et al., “Regional climate modelling in CLARIS-LPB: a concerted approach towards twenty first century projections of regional temperature and precipitation over South America,” Climate Dynamics, vol. 45, Ene. 10, 2015. [Online]. Available: https://doi.org/10.1007/s00382-014-2466-0

T. Ambrizzi, M. S. Reboita, R. P. da Rocha, and M. Llopart, “The state of the art and fundamental aspects of regional climate modeling in South America,” Annals of the New York Academy of Sciences, vol. 1436, no. 1, Jul. 31, 2018. [Online]. Available: https://doi.org/10.1111/nyas.13932

P. G. Zaninelli, C. G. Menéndez, M. Falco, N. López-Franca, and A. F. Carril, “Future hydroclimatological changes in South America based on an ensemble of regional climate models,” Climate Dynamics, vol. 52, Ene. 24, 2019. [Online]. Available: https://doi.org/10.1007/s00382-018-4225-0

D. Bozkurt, M. Rojas, J. P. Boisier, and J. Valdivieso, “Projected hydroclimate changes over andean basins in central chile from downscaled CMIP5 models under the low and high emission scenarios,” Climatic Change, vol. 150, Sep. 3, 2018. [Online]. Available: https://doi.org/10.1007/s10584-018-2246-7

M. F. Cabré, S. Solman, and M. Núñez, “Regional climate change scenarios over southern south America for future climate (2080-2099) using the MM5 model: mean, interannual variability and uncertainties,” Atmósfera, vol. 29, no. 1, Ene. 2016. [Online]. Available: https://doi.org/10.20937/ATM.2016.29.01.04

R. Urrutia and M. Vuille, “Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century,” Journal of Geophysical Research: Atmospheres, vol. 114, no. D2, Ene. 23, 2009. [Online]. Available: https://doi.org/10.1029/2008JD011021

R. Oglesby and et al., “A high-resolution modeling strategy to assess impacts of climate change for Meso America and the Caribbean,” American Journal of Climate Change, vol. 5, no. 2, Jun. 2016. [Online]. Available: http://doi.org/10.4236/ajcc.2016.52019

J. A. Marengo, R. Jones, L. M. Alves, and M. C. Valverde, “Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system,” International Journal of Climatology, vol. 29, no. 15, Feb. 23, 2003. [Online]. Available: https://doi.org/10.1002/joc.1863

J. Zhu, C. J. Poulsen, and B. L. Otto-Bliesner, “High climate sensitivity in CMIP6 models not supported by paleoclimate,” Nature Climate Change, vol. 10, Abr. 30, 2020. [Online]. Available: https://doi.org/10.1038/s41558-020-0764-6

T. Palmer and B. Stevens, “The scientific challenge of understanding and estimating climate change,” Proceedings of the National Academy of Sciences, vol. 116, no. 49, Dic. 3, 2019. [Online]. Available: https://doi.org/10.1073/pnas.1906691116

W. J. Gutowski and et al., “The ongoing need for high-resolution regional climate models: Process understanding and stakeholder information,” Bulletin of the American Meteorological Society, vol. 101, no. 5, May. 1, 2020. [Online]. Available: https://doi.org/10.1175/BAMS-D-19-0113.1

J. A. Martinez, P. A. Arias, C. Castro, H. I. Chang, and C. A. Ochoa-Moya, “Sea surface temperature-related response of precipitation in northern South America according to a WRF multi-decadal simulation,” International Journal of Climatology, vol. 39, no. 4, Mar. 30, 2019. [Online]. Available: https://doi.org/10.1002/joc.5940

F. Giorgi and et al., “Changes in extremes and hydroclimatic regimes in the CORDEX ensemble projections,” Climatic Change, vol. 125, Abr. 12, 2014. [Online]. Available: https://doi.org/10.1007/s10584-014-1117-0

F. Giorgi and W. J. G. Jr, “Regional dynamical downscaling and the CORDEX initiative,” Annual Review of Environment and Resources, vol. 40, Jul. 24, 2015. [Online]. Available: https://doi.org/10.1146/annurev-environ-102014-021217

M. C. Brewer and C. F. Mass, “Projected changes in heat extremes and associated synoptic- and mesoscale conditions over the northwest United States,” Journal of Climate, vol. 29, no. 17, Sep. 1, 2016. [Online]. Available: https://doi.org/10.1175/JCLI-D-15-0641.1

G. L. Stephens and et al., “Dreary state of precipitation in global models,” Journal of Geophysical Research: Atmospheres, vol. 115, no. D4, Dic. 21, 2010. [Online]. Available: https://doi.org/10.1029/2010JD014532

J. A. Posada-Marín, A. M. Rendón, J. F. Salazar, J. F. Mejía, and J. C. Villegas, “WRF downscaling improves ERA-Interim representation of precipitation around a tropical Andean valley during El Niño: implications for gcm-scale simulation of precipitation over complex

terrain,” Climate Dynamics, vol. 52, Mar. 15, 2019. [Online]. Available: https://doi.org/10.1007/s00382-018-4403-0

E. P. Salathé and et al., “Estimates of twenty-first-century flood risk in the Pacific northwest based on regional climate model simulations,” Journal of Hydrometeorology, vol. 15, no. 5, Oct. 1, 2014. [Online]. Available: https://doi.org/10.1175/JHM-D-13-0137.1

C. Covey and et al., “Metrics for the diurnal cycle of precipitation: Toward routine benchmarks for climate models,” Journal of Climate, vol. 29, no. 12, Jun. 15, 2016. [Online]. Available: https://doi.org/10.1175/JCLI-D-15-0664.1

S. Xie and et al., “Improved diurnal cycle of precipitation in E3SM with a revised convective triggering function,” Journal of Advance in Modeling Earth Systems, vol. 11, no. 7, Jun. 22, 2019. [Online]. Available: https://doi.org/10.1029/2019MS001702

A. F. Prein and et al., “A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges,” Reviews of Geophysics, vol. 53, no. 2, Abr. 27, 2015. [Online]. Available: https://doi.org/10.1002/2014RG000475

E. J. Kendon and et al., “Do convection-permitting regional climate models improve projections of future precipitation change?” Bulletin of the American Meteorological Society, vol. 98, no. 1, Ene. 1, 2017. [Online]. Available: https://doi.org/10.1175/BAMS-D-15-0004.1

C. Liu and et al., “Continental-scale convection-permitting modeling of the current and future climate of North America,” Climate Dynamics, vol. 49, no. 19, Jul. 2017. [Online]. Available: https://doi.org/10.1007/s00382-016-3327-9

F. Giorgi, “Thirty years of regional climate modeling: Where are we and where are we going next?” Journal of Geophysical Research: Atmospheres, vol. 124, no. 11, May. 17, 2019. [Online]. Available: https://doi.org/10.1029/2018JD030094

Publicado

2021-05-03

Cómo citar

Arias, P. A., Ortega, G., Villegas, L. D., & Martínez, J. A. (2021). La climatología colombiana en modelos CMIP5/CMIP6: Sesgos persistentes y mejoras. Revista Facultad De Ingeniería Universidad De Antioquia, (100), 75–96. https://doi.org/10.17533/udea.redin.20210525