Análisis comparativo de superficies de prótesis de caderas explantadas de diferentes aleaciones biomédicas

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20210320

Palabras clave:

explantes, tribocorrosión, implantes modulares de cadera, desgaste, corrosión

Resumen

El uso de implantes modulares de cadera ha permitido el uso de diferentes materiales en un solo dispositivo, un mejor ajuste a la anatomía del paciente y, ha facilitado los procedimientos de revisión. Sin embargo, dicha modularidad crea nuevas interfaces que pueden sufrir degradación por mecanismos triboquímicos como fretting – corrosión, por las condiciones mecánicas, químicas y electroquímicas propias del cuerpo. Actualmente, dichas condiciones no son completamente claras, ni la interacción ellas. Este trabajo se centra en el análisis de la degradación de implantes mono-polares de cadera elaborados en aleaciones biomédicas: acero inoxidable (SS), aleaciones de Ti y CoCr, en los que se analiza el nivel de degradación a lo largo de la longitud del cono femoral. El cono femoral de titanio mostró una deformación más significativa de la zona distal que causa un bloqueo entre las partes modulares, comparado con la misma zona de partes fabricadas en SS y aleaciones cobalto-cromo. Por otra parte, partículas de desgaste fueron encontradas en la parte proximal, lo que sugiere que esta es una zona bajo mayor movimiento. En el cono femoral de CoCr pudo observarse una gran cantidad de material orgánico dentro del contacto. Lo anterior pudo ser causado por un ajuste deficiente inferido por la baja deformación en los filetes de la zona distal, lo que probablemente promovió que más material entrara y saliera del contacto.

|Resumen
= 608 veces | PDF (ENGLISH)
= 320 veces| | HTML (ENGLISH)
= 0 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Ángela Bermúdez-Castañeda, Escuela Colombiana de Ingeniería Julio Garavito

Profesor, Departamento de Ingeniería Mecánica.

Johanna Esguerra Arce, Escuela Colombiana De Ingeniería Julio Garavito

Profesor, Departamento de Ingeniería Industrial.

Adriana Esguerra-Arce, Escuela Colombiana de Ingeniería Julio Garavito

Profesora, Departamento de Ingeniería Industrial.

Sofia Valentina Vargas-Pabón, Escuela Colombiana de Ingeniería Julio Garavito

Estudiante, Departamento de Ingeniería Industrial.

Juan Guillermo Ortiz-Martínez, Clínica Universidad La Sabana

Director, Clínica Universidad La Sabana.

David Leonardo Blanco-Estupiñán, Escuela Colombiana de Ingeniería Julio Garavito

Profesor, Departamento de Ingeniería Mecánica.

Juan Guillermo Castaño-González, Universidad de Antioquia

Profesor, Grupo de Investigación CIDEMAT.

Stefano Mischler, Escuela Politécnica Federal de Lausana

Profesor, Grupo de Tribología y Química Interfacial MER. 

Citas

S. R. Knight, R. Aujla, and y S. P. Biswas, “Total hip arthroplasty - over 100 years of operative history,” Journal orthopedic reviews, vol. 3, no. 2, Sep. 06, 2011. [Online]. Available: https://doi.org/10.4081/or.2011.e16

S. Affatato, “1 - the history of total hip arthroplasty (tha),” in Perspectives in Total Hip Arthroplasty. Woodhead Publishing, 2014, pp. 3–18. [Online]. Available: https://doi.org/10.1533/9781782420392.1.3

(1999-2019, Sep-Dec.) Hip, knee & shoulder arthroplasty. Australian Orthopaedic Association National Joint Replacement Registry. Adelaide, Aus. [Online]. Available: t.ly/v5cC

C. I. Esposito, T. M. Wright, S. B. Goodman, and y D. J. Berry, “What is the trouble with trunnions?” Clinical Orthopaedics and Related Research, no. 479, Jul. 01, 2014. [Online]. Available: https://doi.org/10.1007/s11999-014-3746-z

J. M. Nossa and et. al., “Reemplazo de cadera en pacientes jóvenes: Experiencia con vástago corto preservador de cuello femoral,” Revista Colombiana de Ortopedia y Traumatología, vol. 33, no. 3-4, Sep-Dec, 2019. [Online]. Available: https://doi.org/10.1016/j.rccot.2020.02.011

F. D. Puccio and L. Mattei, “Biotribology of artificial hip joints,” World Journal of Orthopedics, vol. 6, no. 1, Jan. 18, 2015. [Online]. Available: https://doi.org/10.5312/wjo.v6.i1.77

I. D. Martino, J. B. Assini, M. E. Elpers, T. M. Wright, and G. H. Westrich, “Corrosion and fretting of a modular hip system: A retrieval analysis of 60 rejuvenate stems,” The Journal of Arthroplasty, vol. 30, no. 8, Aug. 2015. [Online]. Available: https://doi.org/10.1016/j.arth.2015.03.010

A. M. Kop and E. Swarts, “Corrosion of a hip stem with a modular neck taper junction: A retrieval study of 16 cases,” The Journal of Arthroplasty, vol. 24, no. 7, Oct. 2009. [Online]. Available: https://doi.org/10.1016/j.arth.2008.09.009

M. L. Mroczkowski, J. S. Hertzler, S. M. Humphrey, T. Johnson, and C. R. Blanchard, “Effect of impact assembly on the fretting corrosion of modular hip taperss,” Journal of Orthopaedic Research, vol. 24, no. 2, Feb. 2006. [Online]. Available: https://doi.org/10.1002/jor.20048

J. Parekh, H. Jones, N. Chan, and y P. Noble, “Effect of angular mismatch tolerance on trunnion micro-motion in metal-on-metal tha designs,” Orthopaedic Proceedings, vol. 95-B, no. SUPP-34, Feb. 21, 2018. [Online]. Available: https://online.boneandjoint.org.uk/doi/abs/10.1302/1358-992x.95bsupp_34.ista2013-261

S. Y. Jauch, G. Huber, H. Haschke, K. Sellenschloh, and M. M. Morlock, “Design parameters and the material coupling are decisive for the micromotion magnitude at the stem–neck interface of bi-modular hip implants,” Medical Engineering & Physics, vol. 36, no. 3, Mar. 2014. [Online]. Available: https://doi.org/10.1016/j.medengphy.2013.11.009

H. Haschke, S. Y. Jauch-Matt, K. Sellenschloh, G. Huber, and y M. M. Morlock, “Assembly force and taper angle difference influence the relative motion at the stem–neck interface of bi-modular hip prostheses,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 230, no. 7, May. 10, 2016. [Online]. Available: https://doi.org/10.1177/0954411916648717

V. Pacheco-Marte and S. Roldán-Vasco, “Enzymes and cytokines disease in total hip arthroplasty: promoters of immune loosening,” Revista de la Facultad de Medicina, vol. 66, no. 3, 2018. [Online]. Available: https://doi.org/10.15446/revfacmed.v66n3.61525

D. Zujur and J. Álvarez Barreto, “Prótesis en artroplastia total de cadera y recubrimientos bioactivos de quitosano para mejorar su desempeño,” Revista Ingeniería Biomédica, vol. 10, no. 19, Jan-Jun 2016. [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=6155540

J. E. Lemons, “Retrieval and analysis of explanted and in situ implants including bone grafts,” Oral and Maxillofacial Surgery Clinics, vol. 22, no. 3, Aug. 01, 2010. [Online]. Available: https://doi.org/10.1016/j.coms.2010.06.002

G. Gkagkalis, P. Mettraux, P. Omoumi, S. Mischler, and H. A. Rüdiger, “Adverse tissue reaction to corrosion at the neck-stem junction after modular primary total hip arthroplasty,” Orthopaedics Traumatology: Surgery & Research, vol. 101, no. 1, Feb. 2015. [Online]. Available: https://doi.org/10.1016/j.otsr.2014.11.003

D. O. Molloy and et al., “Fretting and corrosion in modular-neck total hip arthroplasty femoral stems,” The Journal of Bone & Joint Surgery, vol. 96, no. 6, Mar. 19, 2014. [Online]. Available: https://doi.org/10.2106/JBJS.L.01625

S. D. Werner, J. V. Bono, S. Nandi, D. M. Ward, and C. T. Talmo, “Adverse tissue reactions in modular exchangeable neck implants: A report of two cases,” The Journal of Arthroplasty, vol. 28, no. 3, Mar. 2013. [Online]. Available: https://doi.org/10.1016/j.arth.2012.07.026

M. Rodelo, J. Muñiz, A. Diaz, and M. M. Cely, “Caracterización de componentes modulares en implantes de cadera retirados anticipadamente de pacientes en las diferentes clínicas en la ciudad de barranquilla,” Prospectiva, vol. 10, no. 1, Jan-Jun 2012. [Online]. Available: https://www.redalyc.org/pdf/4962/496250733016.pdf

A. Lanzutti and et al., “Corrosion fatigue failure of a high carbon cocrmo modular hip prosthesis: Failure analysis and electrochemical study,” Engineering Failure Analysis, vol. 105, Nov. 2019. [Online]. Available: https://doi.org/10.1016/j.engfailanal.2019.07.044

H. Breme, V. Biehl, N. Reger, and E. Gawalt, “Chapter 1c metallic biomaterials: Titanium and titanium alloys,” in Handbook of Biomaterial Properties, W. Murphy, J. Black, and G. Hastings, Eds. New York, NY: Springer, 2016. [Online]. Available: https://doi.org/10.1007/978-1-4939-3305-1_16

G. Mani, “Chapter 1b metallic biomaterials: Cobalt-chromium alloys,” in Handbook of Biomaterial Properties, W. Murphy, J. Black, and y G. Hastings, Eds. New York, NY: Springer, 2016. [Online]. Available: https://doi.org/10.1007/978-1-4939-3305-1_15

A. Ashkanfar, D. J. Langton, and y T. J. Joyce, “A large taper mismatch is one of the key factors behind high wear rates and failure at the taper junction of total hip replacements: A finite element wear analysis,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 69, May. 2017. [Online]. Available: https://doi.org/10.1016/j.jmbbm.2017.01.018

S. L. Su and et al., “Retrieval analysis of neck-stem coupling in modular hip prostheses,” The Journal of Arthroplasty, vol. 32, no. 7, Jul. 2017. [Online]. Available: https://doi.org/10.1016/j.arth.2017.02.016

N. Espallargas, A. Fischer, A. I. Muñoz, S. Mischler, and M. A. Wimmer, “In-situ generated tribomaterial in metal/metal contacts: Current understanding and future implications for implants,” Biotribology, vol. 10, Jun. 2017. [Online]. Available: https://doi.org/10.1016/j.biotri.2017.03.006

A. I. Munoz, N. Espallargas, and S. Mischler, “Case studies,” in Tribocorrosion. New York, NY: Springer, 2020. [Online]. Available: https://doi.org/10.1007/978-3-030-48107-0

H. J. Cooper, R. M. Urban, R. L. Wixson, R. M. Meneghini, and J. J. Jacobs, “Adverse local tissue reaction arising from corrosion at the femoral neck-body junction in a dual-taper stem with a cobalt-chromium modular neck,” The Journal of Bone and Joint Surgery, vol. 95, May. 2013. [Online]. Available: https://doi.org/10.2106/JBJS.L.01042

M. Huber, G. Reinisch, G. Trettenhahn, K. Zweymüller, and F. Lintner, “Presence of corrosion products and hypersensitivity-associated reactions in periprosthetic tissue after aseptic loosening of total hip replacements with metal bearing surfaces,” Acta Biomaterialia, vol. 5, no. 1, Jan. 2009. [Online]. Available: https://doi.org/10.1016/j.actbio.2008.07.032

M. Niinomi, “Mechanical biocompatibilities of titanium alloys for biomedical applications,” vol. 1, no. 1, Jan. 2008. [Online]. Available: https://doi.org/10.1016/j.jmbbm.2007.07.001

Publicado

2021-03-23

Cómo citar

Bermúdez-Castañeda, Ángela, Esguerra Arce, J., Esguerra-Arce, A., Vargas-Pabón, S. V., Ortiz-Martínez, J. G., Blanco-Estupiñán, D. L., Castaño-González, J. G., & Mischler, S. (2021). Análisis comparativo de superficies de prótesis de caderas explantadas de diferentes aleaciones biomédicas. Revista Facultad De Ingeniería Universidad De Antioquia, (100), 35–47. https://doi.org/10.17533/udea.redin.20210320

Artículos más leídos del mismo autor/a