A comparative surface analysis of explanted hip prostheses: stainless steel and Co-Cr alloy versus titanium alloy

Keywords: Retrieval explants, Tribocorrosion, Modular hip joint implants, Wear, Corrosion


The introduction of modular design in total hip arthroplasty has enabled the use of different materials in one single configuration and the adjustment of the prosthesis to the patient’s body, and facilitated medical revisions. However, modularity leads to the presence of new interfaces created between pieces in contact, raising the issue of degradation. Tribocorrosion phenomena have been identified as the main degradation mechanism due to the mechanical, chemical, and electrochemical conditions acting on the materials. In addition, conditions inside the human body are unclear, regarding electrochemical settings and the interaction between the electrochemical and mechanical action. This work is focused on the degradation of monopolar hip joint implants made from biomedical alloys such as stainless steel, Ti, and CoCr alloys. Three cases are presented and analyzed in terms of the degradation level along the trunnion length. Surface analysis done on a titanium trunnion showed a significant ploughing on the distal part, compared to what was found for stainless steel and cobalt-chromium alloys, which can produce a stuck in this area. Meanwhile, in the proximal part, wear debris is found, which suggests more movement in the internal part. Although few debris particles were identified in CoCr trunnion, a large amount of material inside the contact was observed. This could be related to the ploughing generated in the distal thread pattern, which allowed the material to come inside and outside the contact.

= 42 veces | PDF
= 50 veces|


Download data is not yet available.

Author Biographies

Ángela Bermúdez-Castañeda, Escuela Colombiana de Ingeniería Julio Garavito

Full professor, Mechanical Engineering

Johanna Esguerra-Arce, Escuela Colombiana De Ingeniería Julio Garavito

Full professor Industrial Engineering

Adriana Esguerra-Arce, Escuela Colombiana de Ingeniería Julio Garavito

Full professor, Industrial Engineering

Sofia Valentina Vargas-Pabón, Escuela Colombiana de Ingeniería Julio Garavito

Student, Mechanical Engineering

Juan Guillermo Ortiz-Martínez, Clínica Universidad La Sabana

Director, Clínica Universidad La Sabana 

David Leonardo Blanco-Estupiñán, Escuela Colombiana de Ingeniería Julio Garavito

Full professor, Mechanical Engineering

Juan Guillermo Castaño-González, Universidad de Antioquia

Professor, CIDEMAT Research Group

Stefano Mischler, École Polytechnique Fédérale de Lausanne

Professor, Tribology and Interfacial Chemistry Group


S. R. Knight, R. Aujla, and y S. P. Biswas, “Total hip arthroplasty - over 100 years of operative history,” Journal orthopedic reviews, vol. 3, no. 2, Sep. 06, 2011. [Online]. Available: https://doi.org/10.4081/or.2011.e16

S. Affatato, “1 - the history of total hip arthroplasty (tha),” in Perspectives in Total Hip Arthroplasty. Woodhead Publishing, 2014, pp. 3–18. [Online]. Available: https://doi.org/10.1533/9781782420392.1.3

(1999-2019, Sep-Dec.) Hip, knee & shoulder arthroplasty. Australian Orthopaedic Association National Joint Replacement Registry. Adelaide, Aus. [Online]. Available: t.ly/v5cC

C. I. Esposito, T. M. Wright, S. B. Goodman, and y D. J. Berry, “What is the trouble with trunnions?” Clinical Orthopaedics and Related Research, no. 479, Jul. 01, 2014. [Online]. Available: https://doi.org/10.1007/s11999-014-3746-z

J. M. Nossa and et. al., “Reemplazo de cadera en pacientes jóvenes: Experiencia con vástago corto preservador de cuello femoral,” Revista Colombiana de Ortopedia y Traumatología, vol. 33, no. 3-4, Sep-Dec, 2019. [Online]. Available: https://doi.org/10.1016/j.rccot.2020.02.011

F. D. Puccio and L. Mattei, “Biotribology of artificial hip joints,” World Journal of Orthopedics, vol. 6, no. 1, Jan. 18, 2015. [Online]. Available: https://doi.org/10.5312/wjo.v6.i1.77

I. D. Martino, J. B. Assini, M. E. Elpers, T. M. Wright, and G. H. Westrich, “Corrosion and fretting of a modular hip system: A retrieval analysis of 60 rejuvenate stems,” The Journal of Arthroplasty, vol. 30, no. 8, Aug. 2015. [Online]. Available: https://doi.org/10.1016/j.arth.2015.03.010

A. M. Kop and E. Swarts, “Corrosion of a hip stem with a modular neck taper junction: A retrieval study of 16 cases,” The Journal of Arthroplasty, vol. 24, no. 7, Oct. 2009. [Online]. Available: https://doi.org/10.1016/j.arth.2008.09.009

M. L. Mroczkowski, J. S. Hertzler, S. M. Humphrey, T. Johnson, and C. R. Blanchard, “Effect of impact assembly on the fretting corrosion of modular hip taperss,” Journal of Orthopaedic Research, vol. 24, no. 2, Feb. 2006. [Online]. Available: https://doi.org/10.1002/jor.20048

J. Parekh, H. Jones, N. Chan, and y P. Noble, “Effect of angular mismatch tolerance on trunnion micro-motion in metal-on-metal tha designs,” Orthopaedic Proceedings, vol. 95-B, no. SUPP-34, Feb. 21, 2018. [Online]. Available: https://online.boneandjoint.org.uk/doi/abs/10.1302/1358-992x.95bsupp_34.ista2013-261

S. Y. Jauch, G. Huber, H. Haschke, K. Sellenschloh, and M. M. Morlock, “Design parameters and the material coupling are decisive for the micromotion magnitude at the stem–neck interface of bi-modular hip implants,” Medical Engineering & Physics, vol. 36, no. 3, Mar. 2014. [Online]. Available: https://doi.org/10.1016/j.medengphy.2013.11.009

H. Haschke, S. Y. Jauch-Matt, K. Sellenschloh, G. Huber, and y M. M. Morlock, “Assembly force and taper angle difference influence the relative motion at the stem–neck interface of bi-modular hip prostheses,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 230, no. 7, May. 10, 2016. [Online]. Available: https://doi.org/10.1177/0954411916648717

V. Pacheco-Marte and S. Roldán-Vasco, “Enzymes and cytokines disease in total hip arthroplasty: promoters of immune loosening,” Revista de la Facultad de Medicina, vol. 66, no. 3, 2018. [Online]. Available: https://doi.org/10.15446/revfacmed.v66n3.61525

D. Zujur and J. Álvarez Barreto, “Prótesis en artroplastia total de cadera y recubrimientos bioactivos de quitosano para mejorar su desempeño,” Revista Ingeniería Biomédica, vol. 10, no. 19, Jan-Jun 2016. [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=6155540

J. E. Lemons, “Retrieval and analysis of explanted and in situ implants including bone grafts,” Oral and Maxillofacial Surgery Clinics, vol. 22, no. 3, Aug. 01, 2010. [Online]. Available: https://doi.org/10.1016/j.coms.2010.06.002

G. Gkagkalis, P. Mettraux, P. Omoumi, S. Mischler, and H. A. Rüdiger, “Adverse tissue reaction to corrosion at the neck-stem junction after modular primary total hip arthroplasty,” Orthopaedics Traumatology: Surgery & Research, vol. 101, no. 1, Feb. 2015. [Online]. Available: https://doi.org/10.1016/j.otsr.2014.11.003

D. O. Molloy and et al., “Fretting and corrosion in modular-neck total hip arthroplasty femoral stems,” The Journal of Bone & Joint Surgery, vol. 96, no. 6, Mar. 19, 2014. [Online]. Available: https://doi.org/10.2106/JBJS.L.01625

S. D. Werner, J. V. Bono, S. Nandi, D. M. Ward, and C. T. Talmo, “Adverse tissue reactions in modular exchangeable neck implants: A report of two cases,” The Journal of Arthroplasty, vol. 28, no. 3, Mar. 2013. [Online]. Available: https://doi.org/10.1016/j.arth.2012.07.026

M. Rodelo, J. Muñiz, A. Diaz, and M. M. Cely, “Caracterización de componentes modulares en implantes de cadera retirados anticipadamente de pacientes en las diferentes clínicas en la ciudad de barranquilla,” Prospectiva, vol. 10, no. 1, Jan-Jun 2012. [Online]. Available: https://www.redalyc.org/pdf/4962/496250733016.pdf

A. Lanzutti and et al., “Corrosion fatigue failure of a high carbon cocrmo modular hip prosthesis: Failure analysis and electrochemical study,” Engineering Failure Analysis, vol. 105, Nov. 2019. [Online]. Available: https://doi.org/10.1016/j.engfailanal.2019.07.044

H. Breme, V. Biehl, N. Reger, and E. Gawalt, “Chapter 1c metallic biomaterials: Titanium and titanium alloys,” in Handbook of Biomaterial Properties, W. Murphy, J. Black, and G. Hastings, Eds. New York, NY: Springer, 2016. [Online]. Available: https://doi.org/10.1007/978-1-4939-3305-1_16

G. Mani, “Chapter 1b metallic biomaterials: Cobalt-chromium alloys,” in Handbook of Biomaterial Properties, W. Murphy, J. Black, and y G. Hastings, Eds. New York, NY: Springer, 2016. [Online]. Available: https://doi.org/10.1007/978-1-4939-3305-1_15

A. Ashkanfar, D. J. Langton, and y T. J. Joyce, “A large taper mismatch is one of the key factors behind high wear rates and failure at the taper junction of total hip replacements: A finite element wear analysis,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 69, May. 2017. [Online]. Available: https://doi.org/10.1016/j.jmbbm.2017.01.018

S. L. Su and et al., “Retrieval analysis of neck-stem coupling in modular hip prostheses,” The Journal of Arthroplasty, vol. 32, no. 7, Jul. 2017. [Online]. Available: https://doi.org/10.1016/j.arth.2017.02.016

N. Espallargas, A. Fischer, A. I. Muñoz, S. Mischler, and M. A. Wimmer, “In-situ generated tribomaterial in metal/metal contacts: Current understanding and future implications for implants,” Biotribology, vol. 10, Jun. 2017. [Online]. Available: https://doi.org/10.1016/j.biotri.2017.03.006

A. I. Munoz, N. Espallargas, and S. Mischler, “Case studies,” in Tribocorrosion. New York, NY: Springer, 2020. [Online]. Available: https://doi.org/10.1007/978-3-030-48107-0

H. J. Cooper, R. M. Urban, R. L. Wixson, R. M. Meneghini, and J. J. Jacobs, “Adverse local tissue reaction arising from corrosion at the femoral neck-body junction in a dual-taper stem with a cobalt-chromium modular neck,” The Journal of Bone and Joint Surgery, vol. 95, May. 2013. [Online]. Available: https://doi.org/10.2106/JBJS.L.01042

M. Huber, G. Reinisch, G. Trettenhahn, K. Zweymüller, and F. Lintner, “Presence of corrosion products and hypersensitivity-associated reactions in periprosthetic tissue after aseptic loosening of total hip replacements with metal bearing surfaces,” Acta Biomaterialia, vol. 5, no. 1, Jan. 2009. [Online]. Available: https://doi.org/10.1016/j.actbio.2008.07.032

M. Niinomi, “Mechanical biocompatibilities of titanium alloys for biomedical applications,” vol. 1, no. 1, Jan. 2008. [Online]. Available: https://doi.org/10.1016/j.jmbbm.2007.07.001

How to Cite
Bermúdez-Castañeda Ángela, Esguerra-ArceJ., Esguerra-ArceA., Vargas-PabónS. V., Ortiz-MartínezJ. G., Blanco-EstupiñánD. L., Castaño-GonzálezJ. G., & MischlerS. (2021). A comparative surface analysis of explanted hip prostheses: stainless steel and Co-Cr alloy versus titanium alloy. Revista Facultad De Ingeniería Universidad De Antioquia, (100), 35-47. https://doi.org/10.17533/udea.redin.20210320