Caso de estudio de una estrategia de asistencia háptico-adaptativa de teleoperación bilateral sin sensores
DOI:
https://doi.org/10.17533/udea.redin.20220993Palabras clave:
Control Bilateral Háptico, Teleoperación, Modelos de Difusión, Control Adaptativo,, Modelos de Toma de DecisionesResumen
Este artículo presenta un esquema de asistencia háptica sin sensor para telerobótica controlada compartida bilateral, más específicamente se enfocará en la implementación de un esquema de asistencia adaptativa desarrollado previamente por uno de los autores. Para la aplicación del esquema de asistencia adaptativa, se establece una configuración de teleoperación con un robot esclavo virtual y un robot maestro real (dispositivo de control háptico) utilizando un dispositivo háptico comercial (de bajo costo), a saber, el háptico Novint Falcon dispositivo. Un problema en la configuración de la teleoperación es la falta de sensores para medir la fuerza de contacto entre el operador humano y el dispositivo de control háptico (es decir, solo se mide la posición del robot maestro), que es necesaria para la aplicación de la asistencia adaptativa. Se propone un aumento de estimación de perturbación de un observador de entrada desconocido con una red neuronal, que permite la estimación de la fuerza humana (externa) bajo incertidumbre de la planta y perturbaciones externas. El documento presenta los resultados de implementación de un problema de seguimiento de ruta (conocido) con evitación de obstáculos (desconocidos), y se presenta un análisis estadístico sobre la efectividad de los esquemas.
Descargas
Citas
N. Glies and M. Hatzel, “Innovative human-robot cooperation in bmw group production,” BMW Group, Sept. 10, 2013.
L. Göbölös, J. Ramahi, A. Obeso, T. Bartel, M. Traina, A. Edris, F. Hasan, and J. Bonatti, “Robot-assisted totally endoscopic coronary bypass surgery,” Indian Journal of Thoracic and Cardiovascular Surgery, vol. 34, no. 2, pp. 94–104, 2018.
G. Niemeyer, C. Preusche, and G. Hirzinger, “Telerobotics,” in Handbook of Robotics, B. Siciliano and O. Khatib, Eds.
Berlin/Heidelberg: Springer, 2008, pp. 741–757.
S. Hayati and S. T. Venkataraman, “Design and implementation of a robot control system with traded and shared control capability,” in Proceedings of the 1989 IEEE International Conference on Robotics and Automation, Scottsdale, Arizona, USA, 1989, pp. 1310–1315.
L. B. Rosenberg, “Virtual fixtures: Perceptual tools for telerobotic manipulation,” in Proceedings of the IEEE Virtual
Reality International Symposium, Seattle, Washinton, USA, 1993, pp. 76–82.
J. A. Corredor Camargo, “Adaptive assistance-based on decision-making models for telerobotics systems,” Ph.D. thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2016.
C. Passenberg, A. Glaser, and A. Peer, “Exploring the design space of haptic assistants: The assistance policy module,”
IEEE transactions on haptics, vol. 6, no. 4, pp. 440–452, 2013.
J. Smisek, W. Mugge, J. B. J. Smeets, M. M. van Paassen, and A. Schiele, “Adapting haptic guidance authority based on user grip,” in Proceedings of the 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), San Diego, California, USA, 2014, pp. 1516–1521.
A. C. Smith, F. Mobasser, and K. Hashtrudi-Zaad, “Neuralnetwork-based contact force observers for haptic applications,”
IEEE Transactions on Robotics, vol. 22, no. 6, pp. 1163–1175, 2006.
S. Lichiardopol, N. van de Wouw, and H. Nijmeijer, “Boosting human force: A robotic enhancement of a human operator’s force,” in 47th IEEE Conference on Decision and Control, Cancún, Mexico, 2008, pp. 4576–4581.
S. Katsura, Y. Matsumoto, and K. Ohnishi, “Shadow robot for teaching motion,” Robotics and Autonomous Systems,
vol. 58, no. 7, pp. 840–846, 2010.
A. Gupta and M. K. O’Malley, “Disturbance-observer-based force estimation for haptic feedback,” Journal of Dynamic
Systems, Measurement, and Control, vol. 133, no. 1, pp. 014 505–1–014 505–4, 2011.
W.-H. Chen, D. J. Ballance, P. J. Gawthrop, and J. O’Reilly, “A nonlinear disturbance observer for robotic manipulators,” IEEE Transactions on Industrial Electronics, vol. 47, no. 4, pp. 932–938, 2000.
C. Mitsantisuk, S. Stapornchaisit, N. Niramitvasu, and K. Ohishi, “Force sensorless control with 3d workspace analysis
for haptic devices based on delta robot,” in Proceedings of the 41st Annual Conference of the IEEE Industrial Electronics
Society (IECON 2015), Yokohama, Japan, 2015, pp. 1747–1752.
Y. Tian, Z. Chen, T. Jia, A. Wang, and L. Li, “Sensorless collision detection and contact force estimation for collaborative
robots based on torque observer,” in Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Quingdao, China, 2016, pp. 946–951.
J. M. Daly and D. W. Wang, “Time-delayed bilateral teleoperation with force estimation for n-dof nonlinear robot
manipulators,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. ), 2010, pp. 3911–3918.
L. Chan, F. Naghdy, D. Stirling, and M. Field, “Nonlinear bilateral teleoperation using extended active observer
for force estimation and disturbance suppression.” Robotica, vol. 33, no. 1, 2015.
S. A. M. Dehghan, H. R. Koofigar, H. Sadeghian, and M. Ekramian, “Observer-based adaptive force–position control
for nonlinear bilateral teleoperation with time delay,” Control Engineering Practice, vol. 107, 2021.
S. Martin and N. Hillier, “Characterisation of the novint falcon haptic device for application as a robot-manipulator,”
in Proceedings of the Australasian Conference on Robotics and Automation 2009, Sydney, Australia, 2009, pp. 177–
R. E. Stamper, “A three degree of freedom parallel manipulator with only translational degrees of freedom,” Ph.D. thesis, University of Maryland, College Park, Maryland, USA, 1997.
K. Waldron and J. Schmiedeler, “Kinematics,” in Handbook of Robotics, B. Siciliano and O. Khatib, Eds.
Berlin/Heidelberg: Springer, 2008, pp. 9–33.
C. S. Dias Carvalheiras, “A parallel manipulator for prostate cancer biopsies: Kinematic optimization, design and control planning,” Master thesis, Universidade de Lisboa, Lisbon, Portugal, 2017.
R. Featherstone and D. E. Orin, “Dynamics,” in Handbook of Robotics, B. Siciliano and O. Khatib, Eds. Berlin/Heidelberg: Springer, 2008, pp. 35–65.
N. Karbasizadeh, A. Aflakiyan, M. Zarei, M. Tale Masouleh, and A. Kalhor, “Dynamic identification of the novint falcon
haptic device,” in The 4th RSI International Conference on Robotics and Mechatronics (ICRoM 2016), Teheran, Iran,
, pp. 518–523.
L. J. Findley, “Classification of tremors,” Journal of Clinical Neurophysiology, vol. 13, no. 2, pp. 122–132, 1996.
A. Mohammadi, M. Tavakoli, H. J. Marquez, and F. Hashemzadeh, “Nonlinear disturbance observer design for robotic manipulators,” Control Engineering Practice, vol. 21, no. 3, pp. 253–267, 2013.
X. Wang, L. Guo, and Y. Jia, “Online sensing of human steering intervention torque for autonomous driving actuation
systems,” IEEE Sensors Journal, vol. 18, no. 8, pp. 3444–3453, 2018.
J. Hu and R. Xiong, “Contact force estimation for robot manipulator using semiparametric model and disturbance
kalman filter,” IEEE Transactions on Industrial Electronics, vol. 65, no. 4, pp. 3365–3375, 2018.
B. Hannaford, Okamura, and Allison M., “Haptics,” in Handbook of Robotics, B. Siciliano and O. Khatib, Eds. Berlin/Heidelberg: Springer, 2008, pp. 719–739.
M. de Pascale and D. Prattichizzo, “The haptik library: A component based architecture for uniform access to haptic
devices,” IEEE Robotics & Automation Magazine, vol. 14, no. 4, pp. 64–75, 2007.
R. K. Groten, “Haptic human-robot collaboration: How to learn from human dyads,” Ph.D. thesis, Technische Universität
München, Munich, Germany, 2011.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Revista Facultad de Ingeniería Universidad de Antioquia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.