Estimaciones de las emisiones de metano de embalses para la generación hidroeléctrica en Costa Rica

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20230522

Palabras clave:

Emisiones de metano, embalse hidroeléctrico, factor de emisión, Costa Rica

Resumen

Las emisiones de gases de efecto invernadero están relacionadas con fuentes no renovables; sin embargo, la guía metodológica para la estimación de las emisiones de metano y dióxido de carbono en terrenos inundados fue publicada en el año 2006 por el Grupo Intergubernamental de Expertos sobre el Cambio Climático. Diez años después, se han realizado varios estudios sobre la estimación de gas metano en yacimientos ubicados en zonas templadas y tropicales. Costa Rica es un país centroamericano conocido por sus grandes recursos hidroeléctricos y su matriz de generación eléctrica altamente renovable. Este trabajo es el primer estudio, para 11 de los 24 embalses hidroeléctricos gestionados por el Instituto Costarricense de Electricidad, donde se determinan las emisiones de metano, la densidad energética y los factores de emisión para la generación de electricidad. Se utiliza un modelo matemático estático para determinar estos factores con escasos datos de entrada, estimando que el mayor aporte en emisiones de metano corresponde al embalse del Arenal, que es el de mayor superficie y el de menor densidad energética.

|Resumen
= 836 veces | HTML (ENGLISH)
= 0 veces| | PDF (ENGLISH)
= 244 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Rhonmer Orlando Pérez-Cedeño, Universidad Nacional Experimental Politécnica Antonio José de Sucre

Dirección de Investigación y Postgrado. Candidato a Doctor en Ciencias de la Ingeniería

Rodrigo Ramírez-Pisco, Universitat Carlemany

Doctor en Ingeniería Eléctrica, Director del Báchelor en Ingeniería en Organización Industrial

Carmen Luisa Vásquez-Stanescu, Universidad Nacional Experimental Politécnica Antonio José de Sucre

Dirección de Investigación y Postgrado. Coordinadora del Comité Académico de la Maestría de Ingeniería Eléctrica.

Leonardo Suárez-Matarrita, Universidad Técnica Nacional y Universidad de Costa Rica

Director de la Carrera de Ingeniería Energética,

Mercedes Gaitán-Ángulo, Fundación Universidad Konrad Lorenz

Docente Investigador del CIEN de la Escuela de Negocios

Melva Gómez-Caicedo, Fundación Universidad Los Libertadores

Directora del Centro de Investigaciones Económicas y Empresariales

Citas

C. S. Kaunda, C. Z. Kimambo, and T. K. Nielsen, “Hydropower in the context of sustainable energy supply: A review of technologies and challenges,” ISRN Renewable Energy, no. 1, Dec. 03, 2012. [Online]. Available: https://doi.org/10.5402/2012/730631

J. Y. Woon, P.Il-Soo, H. Sang-Sub, J. Su-Hwan, C. Kyung-Won, L. Gangwoong, and et al., “Preliminary analysis of the development of the carbon tracker system in latin america and the caribbean,” Atmósfera, vol. 27, no. 1, Jul. 15, 2014. [Online]. Available: https://doi.org/10.1016/S0187-6236(14)71101-4

Y. Wolde-Rufael and E. Mulat-Weldemeskel, “The moderating role of environmental tax and renewable energy in co2 emissions in latin america and caribbean countries: Evidence from method of moments quantile regression,” Environmental Challenges, vol. 6, Nov. 30, 2022. [Online]. Available: https://doi.org/10.1016/j.envc.2021.100412

E. V. Sperling, “Hydropower in brazil: Overview of positive and negative environmental aspects,” Energy Procedia, vol. 18, Jun. 09, 2012. [Online]. Available: https://doi.org/10.1016/j.egypro.2012.05.023

L. N. Guo, C. She, D. B. Kong, S. L. Yan, Y. P. Xu, and et al., “Prediction of the effects of climate change on hydroelectric generation, electricity demand, and emissions of greenhouse gases under climatic scenarios and optimized ann model,” Energy Reports, vol. 7, Aug. 19, 2021. [Online]. Available: https://doi.org/10.1016/j.egyr.2021.08.134

E. F. Moran, M. C. Lopez, N. Moore, and D. W. Hyndman, “Sustainable hydropower in the 21st century,” PNAS, vol. 115, no. 47, Jul. 15, 2018. [Online]. Available: https://doi.org/10.1073/pnas.1809426115

R. Pérez and W. J. Osal-Herreraa, “Impact of latin american public transport systems on urban mobility and the environment,” Publicaciones en Ciencias y Tecnología, vol. 13, no. 2, Jul-Dec. 2019. [Online]. Available: https://doi.org/10.13140/RG.2.2.14346.70083

R. Pérez and W. Osal, “Greenhouse gases for generation of electricity in non-residential users of venezuela 2006-2017,” Publicaciones en Ciencias y Tecnología, vol. 13, no. 1, Jan-Jun. 2019. [Online]. Available: https://doi.org/10.13140/RG.2.2.15226.64965

BP Statistical Review of World Energy, 71st edition, 2022.

L. Sanchez-Barboza and R. E. Perez-Pineda, “Efficiency of developed countries in controlling the use of fossil fuels to generate energy,” Ecociencia, vol. 4, no. 2, Jan. 02, 2018. [Online]. Available: https://doi.org/10.21855/ecociencia.42.28.

M. Paucar-Samaniego and P. Amancha-Proaño, “Estimation of methane emissions produced by hydroelectric power plant reservoirs in ecuador,” in in 12° Congreso iberoamericano de ingeniería Mecánica, Guayaquil, Ecuador, 2015, pp. 1641–1648.

C. Meza, L. Hernández-Callejo, S. Nesmachnow, A. Ferreira, and V. Leite, “Methane emissions and energy density of reservoirs of hydroelectric plants in venezuela,” in in Proceedings of the III Ibero-American Conference on Smart Cities, Costa rica, 2020, pp. 728–739.

A. Enriquez and M. V. Cremona, “Patagonian wetlands as carbon reservoirs. an under-recognized role in a changing world,” in in Proceedings of the III Ibero-American Conference on Smart Cities, 2017, pp. 10–14.

I. V. Ion and A. Ene, “Evaluation of greenhouse gas emissions from reservoirs: A review,” Sustainability, vol. 13, no. 21, Oct. 17, 2021. [Online]. Available: https://doi.org/10.3390/su132111621

Y. T. Prairie, S. Mercier-Blais, J. A. Harrison, C. Soued, P. del Giorgio, A. Harby, and et al., “A new modelling framework to assess biogenic ghg emissions from reservoirs: The g-res tool,” https://doi.org/10.1016/j.envsoft.2021.105117, vol. 143, Jul. 14, 2021. [Online]. Available: https://doi.org/10.1016/j.envsoft.2021.105117

F. Rust, P. Bodmer, and P. del Giorgio, “Modeling the spatial and temporal variability in surface water co2 and ch4 concentrations in a newly created complex of boreal hydroelectric reservoirs,” Science of The Total Environment, vol. 815, Apr. 01, 2022. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2021.152459

A. Levasseur, S. Mercier-Blais, Y. T. Prairie, A. Tremblay, and C. Turpin, “Improving the accuracy of electricity carbon footprint: Estimation of hydroelectric reservoir greenhouse gas emissions,” Renewable and Sustainable Energy Reviews, vol. 136, Sep. 26, 2020. [Online]. Available: https://doi.org/10.1016/j.rser.2020.110433

E. Calamita, A. Siviglia, G. M. Gettel, and B. Wehrli, “Unaccounted co2 leaks downstream of a large tropical hydroelectric reservoir,” PNAS, vol. 118, no. 25, Jun. 14, 2021. [Online]. Available: https://doi.org/10.1073/pnas.2026004118

L. Yang, X. Li, W. Yan, P. Ma, and J. Wang, “Ch4 concentrations and emissions from three rivers in the chaohu lake watershed in southeast china,” Journal of Integrative Agriculture, vol. 11, no. 4, May. 12, 2011. [Online]. Available: https://doi.org/10.1016/S2095-3119(12)60054-9

I. de Vicente, “Biogeochemistry of mediterranean wetlands: A review about the effects of water-level fluctuations on phosphorus cycling and greenhouse gas emissions,” Water, vol. 13, no. 11, May. 25, 2021. [Online]. Available: https://doi.org/10.3390/w13111510

T. Nirupada-Chanu, S. Kumar-Nag, S. Kumar-Koushlesh, M. Shaya-Devi, and B. Kumar-Das, “Greenhouse gas emission from inland open water bodies and their estimation process—an emerging issue in the era of climate change,” Agricultural Sciences, vol. 13, no. 2, Feb. 2022. [Online]. Available: https://doi.org/10.4236/as.2022.132020

W. Wang, S. L. Li, J. Zhong, L. Wang, H. Yang, and et al., “Co2 emissions from karst cascade hydropower reservoirs: mechanisms and reservoir effect,” Environmental Research Letters, vol. 16, no. 4, Mar. 12, 2021. [Online]. Available: https://doi.org/10.1088/1748-9326/abe962

P. Balcombe, J. F. Speirs, N. P. Brandon, and A. D. Hawkes, “Methane emissions: choosing the right climate metric and time horizon,” Environ. Sci. Process. Impacts, vol. 20, Sep. 8, 2018. [Online]. Available: https://doi.org/10.1039/C8EM00414E

M. Fai-Chow, M. A. bin Bakhrojin, H. Haris, and A. Aravind-Dinesh, “Assessment of greenhouse gas (ghg) emission from hydropower reservoirs in malaysia,” Communications Week, vol. 2, no. 22, Nov. 06, 2018. [Online]. Available: https://doi.org/10.3390/proceedings2221380

R. Mendonça, N. Barros, L. Vidal, F. Pacheco, S. Kosten, and et al., Greenhouse Gas Emissions from Hydroelectric Reservoirs: What Knowledge Do We Have and What is Lacking?, 1st ed. United States: in Greenhouse Gases Emission, Measurement and Management, 2012.

D. J. Bertassoli, H. O. Sawakuchi, K. R. D. Araújo, M. G. P. D. Camargo, V. A. T. Alem, and et al., “How green can amazon hydropower be? net carbon emission from the largest hydropower plant in amazonia,” Science Advances, vol. 7, no. 26, Jun. 25, 2021. [Online]. Available: https://doi.org/10.1126/sciadv.abe147

A. Palau and C. Prieto, “Hidroelectricidad, embalses y cambio climático,” Ingeniería del agua, vol. 16, no. 4, Dec. 31, 2009. [Online]. Available: https://doi.org/10.4995/ia.2009.2959

A. Palau, M. Alonso, and D. Corregidor, “Análisis del ciclo de carbono en embalses y su posible efecto en el cambio climático. aplicación al embalse de susqueda (río ter, ne españa),” Ingeniería Del Agua, vol. 17, no. 3, Sep. 30, 2010. [Online]. Available: https://doi.org/10.4995/ia.2010.2978

J. Herrera, J. F. Rojas, S. Rodríguez, A. Rojas, and V. H. Beita, “Determinación de emisiones de metano en tres embalses hidroeléctricos en costa rica,” Revista de ciencias ambientales, vol. 46, no. 1, Jul.-Dec. 2013. [Online]. Available: https://doi.org/10.4236/as.2022.132020

H. D. Cuadros-Tejeda, “Estimación de las emisiones difusoras de gases efecto invernadero en centrales hidroeléctricas colombianas: Dióxido de carbono (co2) y metano (ch4),” B.A. thesis, Escuela de Ciencias Agricolas, Pecuarias Y del Medio Ambiente (ECAPMA), Palmira, Colombia, 2017.

Revisar, “Appendix 3: Ch4 emissions from flooded land: Basis for future methodological development,” in Intergovernmental Panel on Climate Change, Ginebra, Suiza, 2006, pp. 184–193.

GHG Measurement Guidelines for Freshwater Reservoirs, The UNESCO/IHA Greenhouse Gas Emissions from Freshwater Reservoirs Research Project, Sutton, London, 2010.

G. Godínez-Zamora, L. Victor-Gallardo, J. Angulo-Paniagua, E. Ramos, M. Howells, and et al., “Decarbonising the transport and energy sectors: Technical feasibility and socioeconomic impacts in costa rica,” Energy Strategy Reviews, vol. 32, Sep. 14, 2020. [Online]. Available: https://doi.org/10.1016/j.esr.2020.100573

I. C. de Electricidad, “2019 annual report. generation and demand,” Centro Nacional de Control de Energía, San José, Costa Rica, Tech. Rep., 2019.

C. Meza, L. Hernández-Callejo, S. Nesmachnow, A. Ferreira, and V. Leite, “Proceedings of the iii ibero-american conference on smart cities,” ICSC-CITIES2020, Costa, Rica, 2020.

S. Lu, W. Dai, Y. Tang, and M. Guo, “A review of the impact of hydropower reservoirs on global climate change,” Science of The Total Environment, vol. 711, Oct. 14, 2019. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2019.134996

N. Barros, J. J. Cole, L. J. Tranvik, Y. T. Prairie, D. Bastviken, and et al., “Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude,” Nature Geoscience, vol. 4, Jun. 20, 2011. [Online]. Available: https://doi.org/10.1038/ngeo1211

V. Chanudet, J. Gaillard, J. Lambelain, M. Demarty, S. Descloux, and et al., “Emission of greenhouse gases from french temperate hydropower reservoirs,” Communications Week, vol. 82, no. 51, Apr. 30, 2020. [Online]. Available: https://doi.org/10.1007/s00027-020-00721-3

V. D. M. Cumpa-Millones, “Reducción de gas metano atmosférico utilizando técnicas de riego en cultivo de arroz en condiciones climáticas,” UCV-Scientia, vol. 9, 2017. [Online]. Available: https://tinyurl.com/bd9wrv4j

G. Henry and G. W. Heinke, Ingenieria Ambiental, 2nd ed. Pearson Educación: Broadview Press, 1999.

R. M. Pilla, E. M. Mette, C. E. Williamson, B. V. Adamovich, R. Adrian, O. Anneville, and et al., “Global data set of long-term summertime vertical temperature profiles in 153 lakes,” scientific data, vol. 200, no. 8, Jun. 18, 2021. [Online]. Available: https://doi.org/10.1038/s41597-021-00983-y

C. Song, K. H. Gardner, S. J. Klein, S. Pereira-Souza, and W. Mo, “Cradle-to-grave greenhouse gas emissions from dams in the united states of america,” Renewable and Sustainable Energy Reviews, vol. 90, Apr. 06, 2018. [Online]. Available: https://doi.org/10.1016/j.rser.2018.04.014

I. P. on Climate Change, “Appendix 2 possible approach for estimating co2 emissions from lands converted to permanently flooded land: Basis for future methodological development,” 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Ginebra, Zuisa, 2006.

E. P. Anderson. (2013) Hydropower development and ecosystem services in central america. [Online]. Available: https://tinyurl.com/2p9mf8tv

C. N. de Control de Energía, “2020 annual report. generation and demand,” Instituto Costarricense de Electricidad-CENCE., San José, Costa Rica, Tech. Rep., 2020.

A. Resources. (2022, Apr. 15,) Crear un mapa on-line,. [Online]. Available: https://resources.arcgis.com/es/communities/web/018000000005000000.htm

C. Echevarría, B. D. Waziers, T. Serebrisky, and A. Suárez-Alemán, “How to renew costa rica’s electricity,” Inter-American Development Bank, Costa Rica, Tech. Rep., 2017.

Climatescope. (2023, Jul. 05,) Costa Rica,. [Online]. Available: https://www.global-climatescope.org/markets/cr/

A. Brenes, “University community work project: Energy solutions for everyday life. ICE plants technical specifications n°2,” B. A. thesis, Instituto Costarricense De Electricidad, Costa Rica, 2002.

I. C. de Electricidad, “Reventazón hydroelectric project,” Instituto Costarricense de Electricidad ICE, Costa Rica, Tech. Rep., Jul. 2017.

D. Murillo-García, “Construction of the pirrís hydroelectric project,” Revista edl Colegio Federado de Ingenieros y de Arquitectos de Costa Rica, vol. 232, Jun. 2018. [Online]. Available: https://doi.org/10.4236/as.2022.132020

P. Carrera, T. Castillo, T. Rivadeneira, K. Segura, M. Yujato, and C. Andrade, “Energy statistics report,” Latin American Energy Organization Olade, Quito, Ecuador, Tech. Rep., 2016.

C. F. Statements, “2016 annual report. generation and demand,” ICE GROUP and ICE and CNFL and RACSA and CRICSA and Cable Visión, San José, Costa Rica, Tech. Rep., 2016.

Informe Anual Generación y demanda, Centro nacional de control de energía, Instituto costarricense de electricidad, San José, CR, 2017.

Informe Anual Generación y demanda, Centro nacional de control de energía, Instituo costarricense de electricidad, San José, CR, 2018.

(2015) What is the kyoto protocol? United Nations-Climate Change. [Online]. Available: https://tinyurl.com/2s4ccw8b

(2021) Iha welcomes eu recognition of sustainable hydropower in investment rules. iha. [Online]. Available: https://tinyurl.com/2nybvf5t

F. Mayor-Ruiz, “Estimación de la emisión histórica de gases de efecto invernadero por embalses hidroeléctricos en colombia y su potencial impacto en el factor de emisión de la generación eléctrica,” M.S. thesis, Universidad Nacional de Colombia., Bogotá, Colombia, 2016.

R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye, Probabilidad y Estadística para ingeniería y ciencias, 9th ed. Mexico: Pearson, 2012.

I. M. Nacional, “Factores de emisión de gases de efecto invernadero,” Instituto Meteorológico Nacional, San José, Costa Rica, Tech. Rep., May. 2020.

Publicado

2023-05-17

Cómo citar

Pérez-Cedeño, R. O., Ramírez-Pisco, R., Vásquez-Stanescu, C. L., Suárez-Matarrita, L., Gaitán-Ángulo, M., & Gómez-Caicedo, M. (2023). Estimaciones de las emisiones de metano de embalses para la generación hidroeléctrica en Costa Rica. Revista Facultad De Ingeniería Universidad De Antioquia, (110), 110–119. https://doi.org/10.17533/udea.redin.20230522

Número

Sección

Artículo de investigación