Filtro de arrepentimiento minimax para sistemas de unica entrada y salida inciertos: estudio de simulacion

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20240412

Palabras clave:

Enfoque de arrepentimiento minimax, Desconocido pero acotado, Distribución de error desconocida, Optimización de hiperparametro por malla

Resumen

El filtro de Kalman, ampliamente utilizado desde su introducción en 1960, asume ruidos aleatorios gaussianos. Sin embargo, este supuesto puede ser inapropiado en contextos cuyas variables no provienen de una distribución normal, lo que lleva a un desempeño subóptimo del filtro. Los investigadores han propuesto filtros robustos como el filtro minimax para abordar esta limitación, pero estos pueden proporcionar estimaciones demasiado conservadoras. Este trabajo presenta un enfoque novedoso que combina dinámicas desconocidas pero acotadas para el proceso de estado y procesos estocásticos para la ecuación de medidas, junto con un marco de Arrepentimiento Minimax para mejorar la estimación del estado en modelos dinámicos lineales de una dimensión. Evaluamos el método propuesto a través de dos estudios de simulación. El primer estudio utiliza el algoritmo de búsqueda por malla para optimizar el valor del hiperparámetro, mientras que el segundo estudia el desempeño del método propuesto en comparación con métodos convencionales, incluyendo el filtro de Kalman y una versión robusta del filtro RobKF implementada en software R. Los resultados demuestran la superioridad de nuestro algoritmo propuesto.

|Resumen
= 243 veces | PDF (ENGLISH)
= 107 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

José Perea-Arango, Empresas Públicas de Medellín

Profesional comercial, Departamento de Gas Natural

Piotr Graczyk, Université d'Angers

Departamento de Matemáticas, Facultad de Ciencias

Juan Pablo Fernández Gutiérrez, Universidad de Medellín

Profesor de Ciencias Básicas

Citas

R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal of Basic Engineering, vol. 82, no. 1, 1960. [Online]. Available: https://doi.org/10.1115/1.3662552

J. Iqbal, M. Rehman-Saad, A. Mahmood-Tahir, and A. Malik, “State estimation technique for a planetary robotic rover,” Revista Facultad De Ingenieria Universidad De Antioquia, no. 73, Oct-Dec 2014. [Online]. Available: https://doi.org/10.17533/udea.redin.17275

Q. Ge, J. Ma, H. He, H. Li, and G. Zhang, “A basic smart linear kalman filter with online performance evaluation based on observable degree,” Applied Mathematics and Computation, vol. 367, 2020. [Online]. Available: https://doi.org/10.1016/j.amc.2019.124603

Y. Li, X. Song, Z. Zhang, D. Zhao, and Z. Wang, “h∞ deconvolution filter design for uncertain linear discrete time-variant systems: A krein space approach,” Applied Mathematics and Computation, vol. 361, 2019. [Online]. Available: https://doi.org/10.1016/j.amc.2019.05.015

T. S. Badings, A. Abate, N. Jansen, D. Parker, H. A. Poonawala, and M. Stoelinga, “Sampling-based robust control of autonomous systems with non-gaussian noise,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 9, Jun. 2022. [Online]. Available: https://doi.org/10.1609/aaai.v36i9.21201

M. Mintz, “A note on minimax estimation and kalman filtering,” IEEE Transactions on Automatic Control, vol. 23, no. 4, 1978. [Online]. Available: https://doi.org/10.1109/TAC.1969.1099239

M. Mintz, “A kalman filter as a minimax estimator,” Journal of Optimization Theory and Applications, vol. 9, no. 1, 1972. [Online]. Available: https://doi.org/10.1007/BF00932347

N. Castaño, J. P. Fernández-Gutiérrez, V. Azhmyakov, and P. Graczyk, “Non-parametric identification of upper bound covariance matrices for min-sup robust kalman filter: Application to the ar case,” in IFAC-PapersOnLine, vol. 55, no. 40, 2022. [Online]. Available: https://doi.org/10.1016/j.ifacol.2023.01.068

M. J. Morris, “The kalman filter: A robust estimator for some classes of linear quadratic problems,” IEEE Transactions on Information Theory, vol. 22, no. 5, 1976. [Online]. Available: https://doi.org/10.1109/TIT.1976.1055611

Y. Sholeh and K. Pelckmans, “Worst-case prediction performance analysis of the kalman filter,” IEEE Transactions on Automatic Control, vol. 63, no. 6, 2018. [Online]. Available: https://doi.org/10.1109/TAC.2017.2757908

A. Pankov and G. Miller, “Minimax filter for statistically indeterminate stochastic differential system,” IFAC Proceedings Volumes, vol. 38, no. 1, 2005. [Online]. Available: https://doi.org/10.3182/20050703-6-CZ-1902.00389

E. Gyurkovics and T. Takács, “Robust energy-to-peak filter design for a class of unstable polytopic systems with a macroeconomic application,” Applied Mathematics and Computation, vol. 420, 2022. [Online]. Available: https://doi.org/10.1016/j.amc.2021.126729

Y. C. Eldar, A. Ben-Tal, and A. Nemirovski, “Minimax regret estimation in linear models,” in 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, 2004. [Online]. Available: https://doi.org/10.1109/ICASSP.2004.1326219

B. Hassibi, A. H. Sayed, and T. Kailath, “Linear estimation in krein spaces-theory,” IEEE Transactions on Automatic Control, vol. 41, no. 1, pp. 18–33, 1996. [Online]. Available: https://doi.org/10.1109/9.481605

B. Hassibi and T. Kailath, “H/sup /spl infin// bounds for least-squares estimators,” IEEE Transactions on Automatic Control, vol. 46, no. 2, 2001. [Online]. Available: https://doi.org/10.1109/9.905700

M. M. J. Mirza, “A modified kalman filter for non-gaussian measurement noise,” in Communication Systems and Information Technology, M. Ma, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. [Online]. Available: https://doi.org/10.1007/978-3-642-21762-3_52

X. Sun, J. Duan, X. Li, and X. Wang, “State estimation under non-gaussian levy noise: A modified kalman filtering method,” arXiv e-prints, 2013. [Online]. Available: https://ui.adsabs.harvard.edu/abs/2013arXiv1303.2395S

V. Azhmyakov, “Optimal control of a well-stirred bioreactor in the presence of stochastic perturbations,” Informatica, vol. 13, no. 2, 2002. [Online]. Available: https://doi.org/10.3233/INF-2002-13201

J. C. Spall, “The kantorovich inequality for error analysis of the kalman filter with unknown noise distributions,” Technical Communique, vol. 31, no. 10, 1995. [Online]. Available: https://doi.org/10.1016/0005-1098(95)00069-9

J. L. Maryak, J. C. Spall, and B. D. Heydon, “Use of the Kalman filter for inference in state-space models with unknown noise distributions,” IEEE Transactions on Automatic Control, vol. 46, no. 2, 2001. [Online]. Available: https://doi.org/10.1109/TAC.2003.821415

H.-S. Ahn, Y.-S. Kim, and Y. Chen, “An interval kalman filtering with minimal conservatism,” Applied Mathematics and Computation, vol. 218, no. 18, 2012. [Online]. Available: https://doi.org/10.1016/j.amc.2012.02.050

Y. Liu, Y. Zhao, and F. Wu, “Ellipsoidal state-bounding-based set-membership estimation for linear system with unknown-but-bounded disturbances,” IET Control Theory & Applications, vol. 10, no. 4, 2016. [Online]. Available: https://doi.org/10.1049/iet-cta.2015.0654

Z. Wang, G. Xu, Z. Liu, Y. Wang, and Z. Ji, “Orthotopic-filtering-based fault diagnosis algorithms for nonlinear systems with slowly varying faults,” Journal of the Franklin Institute, vol. 357, 2020. [Online]. Available: https://doi.org/10.1016/j.jfranklin.2020.03.033

L. Savage, “The theory of statistical decision,” Journal of the American Statistical Association, vol. 46, 1951. [Online]. Available: https://doi.org/10.1080/01621459.1951.10500768

N. Oliver, F. Perez-Cruz, S. Kramer, J. Read, and J. Lozano, Machine Learning and Knowledge Discovery in Databases. Research Track European Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings, Part III: European Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings, Part III, 2021. [Online]. Available: https://doi.org/10.1007/978-3-030-86486-6

A. No and T. Weissman, “Minimax filtering regret via relations between information and estimation,” IEEE Transactions on Information Theory, vol. 60, no. 8, 2014. [Online]. Available: https://doi.org/10.1109/TIT.2014.2323069

J. Y. Halpern and S. Leung, “Minimizing regret in dynamic decision problems,” Theory and Decision, vol. 81, 2016. [Online]. Available: https://doi.org/10.1007/s11238-015-9526-8

Y. Eldar, A. Ben-Tal, and A. Nemirovski, “Linear minimax regret estimation of deterministic parameters with bounded data uncertainties,” IEEE Transactions on Signal Processing, vol. 52, no. 8, 2004. [Online]. Available: https://doi.org/10.1109/TSP.2004.831144

L. Chang, B. Hu, G. Chang, and A. Li, “Robust derivative-free kalman filter based on huber’s m-estimation methodology,” Journal of Process Control, vol. 23, no. 10, 2013. [Online]. Available: https://doi.org/10.1016/j.jprocont.2013.05.004

A. T. M. Fisch, D. Grose, I. A. Eckley, P. Fearnhead, and L. Bardwell, RobKF: Innovative and/or Additive Outlier Robust Kalman Filtering, 2022, r package version 1.0.2. [Online]. Available: https://doi.org/10.48550/arXiv.2007.03238

J. Fan, R. Li, C.-H. Zhang, and H. Zou, “Statistical foundations of data science,” in Statistical Foundations of Data Science. Chapman and Hall/CRC, 2021.

D. Akkaya and M. Pınar, “Minimizers of sparsity regularized huber loss function,” Journal of Optimization Theory and Applications, vol. 187, 2020. [Online]. Available: https://doi.org/10.1007/s10957-020-01745-3

A. Courand and M. Metz, “Evaluation of a robust regression method (roboost-plsr) to predict biochemical variables for agronomic applications: Case study of grape berry maturity monitoring,” Chemometrics and Intelligent Laboratory Systems, vol. 221, 2022. [Online]. Available: https://doi.org/10.1016/j.chemolab.2021.104485

C. Körner, “Mastering azure machine learning,” in Mastering Azure Machine Learning. Packt Publishing, 2022.

Descargas

Publicado

2024-04-03

Cómo citar

Perea-Arango, J., Graczyk, P., & Fernández Gutiérrez, J. P. (2024). Filtro de arrepentimiento minimax para sistemas de unica entrada y salida inciertos: estudio de simulacion. Revista Facultad De Ingeniería Universidad De Antioquia. https://doi.org/10.17533/udea.redin.20240412

Número

Sección

Artículo de investigación