Mejorando el reconocimiento facial en sistemas de vigilancia mediante super-resolución embebida

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20240203

Palabras clave:

Súper resolución, mejora de rostros, visión por computador, video vigilancia, aprendizaje supervisado

Resumen

Este documento detalla la implementación de una red neuronal convolucional de aplicación a nivel sub-pixel diseñada para mejorar la resolución de imágenes faciales. El modelo utiliza una serie de filtros para aumentar progresivamente el número de píxeles, estimando la información necesaria para los nuevos píxeles tanto de la imagen original como del entrenamiento derivado de 17,500 imágenes sintéticas producidas por redes neuronales adversarias. Dentro del contexto de la vigilancia y aplicaciones relacionadas, la red neuronal convolucional entrenada muestra características beneficiosas. Por ejemplo, se puede implementar dentro de un dispositivo para lograr imágenes de mayor resolución de las que la cámara física puede producir. Esta investigación subraya la viabilidad de dicho dispositivo a través de la implementación y evaluación de la red en el sistema embebido NVIDIA Jetson TX2. Los hallazgos demuestran la practicidad del modelo para aplicaciones de vigilancia en tiempo real y su capacidad para producir imágenes de calidad superior en comparación con varios métodos de interpolación, según lo determinado por un proceso de prueba exhaustivo que mide varios atributos de las imágenes generadas.

 

|Resumen
= 420 veces | PDF (ENGLISH)
= 100 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Andrés David Gómez-Bautista, Pontificia Universidad Javeriana

Estudiante, Departamento de Electrónica

Francisco Carlos Calderón-Bocanegra, Pontificia Universidad Javeriana

Profesor e Investigador. Departamento de Ingeniería Electrónica

Citas

Z. Bojkovic and A. Samcovic, “Face detection approach in neural network based method for video surveillance,” in 2006 8th Seminar on Neural Network Applications in Electrical Engineering, Belgrade, Serbia, 2006. [Online]. Available: https://doi.org/10.1109/NEUREL.2006.341172

H. Qezavati, B. Majidi, and M. Manzuri, “Partially covered face detection in presence of headscarf for surveillance applications,” in 4th International Conference on Pattern Recognition and Image Analysis (IPRIA), Tehran, Iran, 2019. [Online]. Available: https://doi.org/10.1109/PRIA.2019.8786004

J. Harikrishnan, A. Sudarsan, A. Sadashiv, and R. Ajai, “Vision-face recognition attendance monitoring system for surveillance using deep learning technology and computer vision,” in International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN),, Vellore, India, 2019. [Online]. Available: https://doi.org/10.1109/ViTECoN.2019.8899418

Y. Wang, T. Bao, C. Ding, and M. Zhu, “Face recognition in real-world surveillance videos with deep learning method,” in 2nd International Conference on Image, Vision and Computing (ICIVC), Chengdú, China, 2017. [Online]. Available: https://doi.org/10.1109/ICIVC.2017.7984553

Q. Zhao and S. Wang, “Real-time face tracking in surveillance videos on chips for valuable face capturing,” in International Conference on Artificial Intelligence and Computer Engineering (ICAICE),, Beijing, China, 2020. [Online]. Available: https://doi.org/10.1109/ICAICE51518.2020.00060

A. Makhfoudi, S. Almaadeed, A. Bouridane, G. Sexton, and R. Jiang, “Visualization of faces from surveillance videos via face hallucination,” in International Conference on Control, Decision and Information Technologies (CoDIT), Metz, France, 2014. [Online]. Available: https://doi.org/10.1109/CoDIT.2014.6996982

Z. Chen, Q. He, W. Pang, and Y. Li, “Frontal face generation from multiple pose-variant faces with cgan in real-world surveillance scene,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 2018. [Online]. Available: https://doi.org/10.1109/ICASSP.2018.8462648

A. Khan, M. Khan, F. Obaid, S. Jadoon, M. Khan, and M. Sikandar, “A novel multi-frame super resolution algorithm for surveillance camera image reconstruction,” in First International Conference on Anti-Cybercrime (ICACC), Riyadh, Saudi Arabia, 2015. [Online]. Available: https://doi.org/10.1109/Anti-Cybercrime.2015.7351950

F. Mokhayeri, E. Granger, and G. Bilodeau, “Synthetic face generation under various operational conditions in video surveillance,” in IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 2015. [Online]. Available: https://doi.org/10.1109/ICIP.2015.7351567

S. Park, M. Park, and M. Kang, “Super-resolution image reconstruction: a technical overview,” in presented at IEEE Aerospace Conference, 2003. [Online]. Available: https://doi.org/10.1109/MSP.2003.1203207

L. Ziwei, W. Chengdong, C. Dongyue, Q. Yuanchen, and W. Chunping, “Overview on image super resolution reconstruction,” in 26th Chinese Control and Decision Conference (2014 CCDC), Changsha, China, 2014. [Online]. Available: https://doi.org/10.1109/CCDC.2014.6852498

IEEE, “Ieee standard computer dictionary: A compilation of ieee standard computer glossaries,” in presented at IEEE Std 610, 1991. [Online]. Available: https://doi.org/10.1109/IEEESTD.1991.106963

P. Shamsolmoali, M. E. Celebi, and R. Wang, “Deep learning approaches for real-time image super-resolution,” Neural Computing and Applications, vol. 32, Jul. 15, 2020. [Online]. Available: https://doi.org/10.1007/s00521-020-05176-z

X. Niu, “An overview of image super-resolution reconstruction algorithm,” in 11th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 2018. [Online]. Available: https://doi.org/10.1109/ISCID.2018.10105

T. Cui, L. Tang, J. Nan, and Z. Li, “Space target super-resolution based on low-complex convolutional networks,” in IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 2019. [Online]. Available: https://doi.org/10.1109/ICSIDP47821.2019.9173516

H. Huang, X. Fan, C. Qi, and S. Zhu, “A learning-based pocs algorithm for face image super-resolution reconstruction,” in International Conference on Machine Learning and Cybernetics, Guangzhou, China, 2005. [Online]. Available: https://doi.org/10.1109/ICMLC.2005.1527837

X. Yang, W. Wu, K. Liu, P. W. Kim, A. K. Sangaiah, and et al., “Long-distance object recognition with image super resolution: A comparative study,” in presented at IEEE Access, 2018. [Online]. Available: https://doi.org/10.1109/ACCESS.2018.2799861

X. Hu, X. Liu, Z. Wang, X. Li, W. Peng, and G. Cheng, “Rtsrgan: Real-time super-resolution generative adversarial networks,” in Seventh International Conference on Advanced Cloud and Big Data (CBD), Suzhou, China, 2019. [Online]. Available: https://doi.org/10.1109/CBD.2019.00064

Y. Lee, J. Yun, Y. Hong, J. Lee, and M. Jeon, “Accurate license plate recognition and super-resolution using a generative adversarial networks on traffic surveillance video,” in IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia), JeJu, Korea (South), 2018. [Online]. Available: https://doi.org/10.1109/ICCE-ASIA.2018.8552121

S. Kim and P. Bindu, “Realizing real-time deep learning-based super-resolution applications on integrated gpus,” in 15th IEEE International Conference on Machine Learning and Applications (ICMLA), Anaheim, CA, USA, 2016. [Online]. Available: https://doi.org/10.1109/ICMLA.2016.0122

W. Shi, J. Caballero, F. Huszár, J. Totz, A. Aitken,R. Bishop, andet al., “Real-time single image and videosuper-resolution using an efficient sub-pixel convolutionalneural network,” inIEEE Conference on Computer Visionand Pattern Recognition (CVPR), 2016. [Online]. Available:https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Shi_Real-Time_Single_Image_CVPR_2016_paper.html

AI Free. This person does not exist. Accessed Oct. 18, 2021. [Online].Available:https://thispersondoesnotexist.com/

T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila,“Analyzing and improving the image quality of stylegan,”Arxiv,vol. 2, Mar. 23, 2020. [Online]. Available:https://doi.org/10.48550/arXiv.1912.04958

Cascade Classifier, Open Source Computer Vision 3.4.20, 2022.

Face recognition. GitHub. Accessed Nov. 13, 2013. [Online].Available:https://github.com/ageitgey/face_recognition

J. E. Sanabria-Moyano, M. D. P. Roa-Avella, and O. I. Lee-Pérez,“Tecnología de reconocimiento facial y sus riesgos en los derechoshumanos,”Revista Criminalidad, vol. 64, no. 3, 2022. [Online].Available:https://doi.org/10.47741/17943108.366

M. Márquez, C. A. Vargas, and H. Arguello, “Compact spatio-spectralalgorithm for single image super-resolution in hyperspectral imaging,”Ingeniería e Investigación, vol. 36, no. 3, Sep-Dec.2016 2016. [Online]. Available:https://doi.org/10.15446/ing.investig.v36n3.54267

S. Karalasingham, R. C. Deo, D. Casillas-Pérez, N. Raj, and S. Salcedo-Sanz, “Downscaling surface albedo to higher spatial resolutions with an image super-resolution approach and proba-v satellite images,” in IEEE Access, 2023. [Online]. Available: https://doi.org/10.1109/ACCESS.2023.3236253

M. A. Talab, S. Awang, and S. A. d. M. Najim, “Super-low resolution face recognition using integrated efficient sub-pixel convolutional neural network (espcn) and convolutional neural network (cnn),” in IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), Selangor, Malaysia, 2019. [Online]. Available: https://doi.org/10.1109/I2CACIS.2019.8825083

A. Leftheriotis, A. Tzomaka, D. Danopoulos, G. Lentaris, G. Theodoridis, and D. Soudris, “Evaluating versal acap and conventional fpga platforms for ai inference,” in 12th International Conference on Modern Circuits and Systems Technologies (MOCAST), Athens, Greece, 2023. [Online]. Available: https://doi.org/10.1109/MOCAST57943.2023.10176615

Descargas

Publicado

2024-02-08

Cómo citar

Gómez-Bautista, A. D., & Calderón-Bocanegra, F. C. (2024). Mejorando el reconocimiento facial en sistemas de vigilancia mediante super-resolución embebida. Revista Facultad De Ingeniería Universidad De Antioquia, (112), 98–110. https://doi.org/10.17533/udea.redin.20240203

Número

Sección

Artículo de investigación