Adsorción de cromo con un adsorbente compuesto de residuos de maíz y bentonita

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20241249

Palabras clave:

metales, materia orgánica, Arcilla, Estadística

Resumen

El cromo es un metal pesado que representa un riesgo para la salud humana y la calidad ambiental. Su adsorción de aguas residuales, con tecnologías sencillas y económicas, se ha convertido en una solución clave para mitigar su impacto. En este estudio se exploró la eficacia de un adsorbente compuesto de bentonita y residuos de maíz en la adsorción del cromo. La investigación analizó la cinética y el equilibrio de adsorción, la optimización del proceso y los mecanismos de adsorción. Para la optimización se empleó un diseño de superficie de respuesta considerando: tiempo de adsorción (min), dosis de adsorbente (g/L) y concentración inicial de cromo en solución (mg/L). Los resultados indican que la cinética de adsorción se ajusta al modelo de pseudo-primer orden (R2 = 0.968) y el equilibrio de adsorción se ajusta al modelo de Freundlich (R2 = 0.997). En la optimización, la dosis del adsorbente fue el factor más crítico. Las condiciones óptimas de operación son: 103 minutos, 29.71 g/L de adsorbente y 31.13 mg/L de concentración inicial de cromo. Los resultados sugieren que la adsorción del cromo es un proceso multifacético que implica difusión y una interacción posterior en la superficie y en los bordes de las capas de la bentonita. El análisis químico, junto con los cambios en el espectro FTIR, apuntan a una interacción entre el cromo con el silicio y aluminio de la bentonita.

|Resumen
= 57 veces | PDF (ENGLISH)
= 19 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Miguel Herrera-Gavidia, Universidad Nacional de Ingeniería

Environmental Engineer

Dalia Carbonel, Universidad Nacional de Ingeniería

Maestra en Ciencias, Environmental Engineering Departament

Hugo Chirinos-Collantes, Universidad Nacional de Ingeniería

Doctor en Ciencias, Profesor. Facultad de Ingeniería Ambiental

Citas

R. T. Kapoor, M. F. Bani-Mfarrej, P. Alam, J. Rinklebe, and P. Ahmad, “Accumulation of chromium in plants and its repercussion in animals and humans,” Environmental Pollution, vol. 301, May 2022. [Online]. Available: https://doi.org/10.1016/j.envpol.2022.119044

A. Bakshi and A. K. Panigrahi, “A comprehensive review on chromium induced alterations in fresh water fishes,” Toxicology Reports, vol. 5, 2018. [Online]. Available: https://doi.org/10.1016/j.toxrep.2018.03.007

G. Lian, B. Wang, X. Lee, L. Li, T. Liu, and W. Lyu, “Enhanced removal of hexavalent chromium by engineered biochar composite fabricated from phosphogypsum and distillers grains,” Science of The Total Environment, vol. 697, Dec 2019. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2019.134119

Nakkeeran, C. Patra, T. Shahnaz, S. Rangabhashiyam, and N. Selvaraju, “Continuous biosorption assessment for the removal of hexavalent chromium from aqueous solutions using Strychnos nux-vomica fruit shell,” Bioresource Technology Reports, vol. 3, Sep 2018. [Online]. Available: https://doi.org/10.1016/j.biteb.2018.09.001

S. Prasad, K. K. Yadav, S. Kumar, N. Gupta, M. M. S. Cabral-Pinto, S. Rezania et al., “Chromium contamination and effect on environmental health and its remediation: A sustainable approaches,” Journal of Environmental Management, vol. 285, May 2021. [Online]. Available: https://doi.org/10.1016/j.jenvman.2021.112174

M. Nur-E-Alam, M. A. S. Mia, F. Ahmad, and M. M. Rahman, “An overview of chromium removal techniques from tannery effluent,” Applied Water Science, vol. 10, no. 9, Sep 2020. [Online]. Available: https://doi.org/10.1007/s13201-020-01286-0

H. M. Córdova-Bravoa, R. Vargas-Parker, M. F. Cesare-Coral, L. F. del Pino, and L. Visitació-Figueroa, “Tratamiento de las aguas residuales del proceso de curtido tradicional y alternativo que utiliza acomplejantes de cromo,” Revista de la Sociedad Química del Perú, vol. 80, no. 3, 2014. [Online]. Available: https://www.redalyc.org/articulo.oa?id=371937639005

P. M. Condori-Ramos and M. A. Pumacayo-Gutiérrez, “Evaluación de la remediación de aguas contaminadas con cromo empleando una columna de lecho fijo con biomasa de cáscara de papa (Solanum tuberosum) Arequipa 2019,” 2019, accessed: Nov. 23, 2023. [Online]. Available: https://repositorio.ucsm.edu.pe/handle/20.500.12920/9527

M. A. Irshad, S. Sattar, R. Nawaz, S. A. Al-Hussain, M. Rizwan et al., “Enhancing chromium removal and recovery from industrial wastewater using sustainable and efficient nanomaterial: A review,” Ecotoxicology and Environmental Safety, vol. 263, Sep 2023. [Online]. Available: https://doi.org/10.1016/j.ecoenv.2023.115231

S. S. Kerur, S. Bandekar, M. S. Hanagadakar, S. S. Nandi, G. M. Ratnamala, and P. G. Hegde, “Removal of hexavalent chromium-industry treated water and wastewater: A review,” Materials Today Proceedings, vol. 42, 2021. [Online]. Available: https://doi.org/10.1016/j.matpr.2020.12.492

K. GracePavithra, V. Jaikumar, P. S. Kumar, and P. SundarRajan, “A review on cleaner strategies for chromium industrial wastewater: Present research and future perspective,” Journal of Cleaner Production, vol. 228, Aug. 2019. [Online]. Available: https://doi.org/10.1016/j.jclepro.2019.04.117

R. Chakraborty, A. Asthana, A. K. Singh, B. Jain, and A. B. H. Susan, “Adsorption of heavy metal ions by various low-cost adsorbents: A review,” International Journal of Environmental Analytical Chemistry, vol. 102, no. 2, Jan. 2022. [Online]. Available: https://doi.org/10.1080/03067319.2020.1722811

E. A. Ashour and M. A. Tony, “Eco-friendly removal of hexavalent chromium from aqueous solution using natural clay mineral: Activation and modification effects,” SN Applied Sciences, vol. 2, no. 12, Dec 2020. [Online]. Available: https://doi.org/10.1007/s42452-020-03873-x

A. A. Jock, I. O. Oboh, U. E. Inyang, L. P. Ganchok, and O. Adeku, “Chromium and nickel metal ions removal from contaminated water using Nigerian bentonite clay,” Water Practice and Technology, vol. 16, no. 3, Jul 2021. [Online]. Available: https://doi.org/10.2166/wpt.2021.031

V. E. Olivo, P. D. M. Prietto, and E. P. Korf, “Review of guidelines for sustainable municipal waste management: Best practices in Brazil,” Proceedings of the Institution of Civil Engineers - Waste and Resource Management, vol. 175, no. 2, May 2022. [Online]. Available: https://doi.org/10.1680/jwarm.21.00017

L. L. Pérez-Antolinez, I. C. Pa-Astudillo, A. P. Sandoval-Aldana, and G. C. Peñaloza-Atuesta, “Uso de cáscara de cacao (Theobroma cacao) para la remoción de cromo en solución acuosa,” Revista EIA, vol. 17, no. 34, Nov. 2020. [Online]. Available: https://doi.org/10.24050/reia.v17i34.1393

C. Tejada-Tovar, A. Villabona-Ortíz, and R. Ortega-Toro, “Determination of kinetic parameters in the biosorption of chromium (VI) in aqueous solution,” Ingeniería y Ciencia, vol. 16, no. 31, Jun. 2020. [Online]. Available: https://doi.org/10.17230/ingciencia.16.31.6

S. Fan, Y. Wang, Y. Li, J. Tang, Z. Wang, J. Tang et al., “Facile synthesis of tea waste/Fe₃O₄ nanoparticle composite for hexavalent chromium removal from aqueous solution,” RSC Advances, no. 13, 2017. [Online]. Available: https://doi.org/10.1039/C6RA27781K

J. Bayuo, M. A. Abukari, and K. B. Pelig-Ba, “Optimization using central composite design (CCD) of response surface methodology (RSM) for biosorption of hexavalent chromium from aqueous media,” Applied Water Science, vol. 10, no. 135, 2020. [Online]. Available: https://doi.org/10.1007/s13201-020-01213-3

I. Christica and R. Julia, “Activated carbon utilization from corn cob (Zea mays) as a heavy metal adsorbent in industrial waste,” Asian Journal of Pharmaceutical Research and Development, vol. 6, no. 5, Oct 2018. [Online]. Available: https://doi.org/10.22270/ajprd.v6i5.411

A. Villabona-Ortíz, C. Tejada-Tovar, and A. D. Gonzalez-Delgado, “Adsorption of Cd²⁺ ions from aqueous solution using biomasses of Theobroma cacao, Zea mays, Manihot esculenta, Dioscorea rotundata, and Elaeis guineensis,” Applied Sciences, vol. 11, no. 6, Mar. 2021. [Online]. Available: https://doi.org/10.3390/app11062657

I. Polowczyk, T. Kozlecki, J. Ulatowska, and A. Bastrzyk, “Solid waste materials for arsenic and chromium removal,” in Innovative Materials and Methods for Water Treatment. Leiden: CRC Press, 2016, pp. 217–256.

R. Foroutan, R. Mohammadi, A. S. Adeleye, S. Farjadfard, Z. Esvandi, H. Arfaeinia et al., “Efficient arsenic(V) removal from contaminated water using natural clay and clay composite adsorbents,” Environmental Science and Pollution Research, vol. 26, Oct. 2019. [Online]. Available: https://doi.org/10.1007/s11356-019-06070-5

S. K. M. T. Hossain, P. K. Shaha, U. Rayhan, A. Islam, T. R. Choudhury et al., “Functionalized layered double hydroxides composite bio-adsorbent for efficient copper(II) ion encapsulation from wastewater,” Journal of Environmental Management, vol. 300, Dec. 2021. [Online]. Available: https://doi.org/10.1016/j.jenvman.2021.113782

M. Mushtaq, H. N. Bhatti, M. Iqbal, and S. Noreen, “Eriobotrya japonica seed biocomposite efficiency for copper adsorption: Isotherms, kinetics, thermodynamic and desorption studies,” Journal of Environmental Management, vol. 176, Jul. 2016. [Online]. Available: https://doi.org/10.1016/j.jenvman.2016.03.013

S. M. Ali, “Fabrication of a nanocomposite from an agricultural waste and its application as a biosorbent for organic pollutants,” International Journal of Environmental Science and Technology, vol. 15, Jul. 2018. [Online]. Available: https://doi.org/10.1007/s13762-017-1477-x

M. A. Adebayo, J. I. Adebomi, T. O. Abe, and F. I. Areo, “Removal of aqueous Congo red and malachite green using ackee apple seed–bentonite composite,” Colloid and Interface Science Communications, vol. 38, Sep. 2020. [Online]. Available: https://doi.org/10.1016/j.colcom.2020.100311

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th ed. American Waterworks Association, 2022.

A. A. Oyekanmi, A. Ahmad, K. Hossain, and M. Rafatullah, “Adsorption of Rhodamine B dye from aqueous solution onto acid-treated banana peel: Response surface methodology, kinetics and isotherm studies,” PLoS One, vol. 14, no. 5, May 2019. [Online]. Available: https://doi.org/10.1371/journal.pone.0216878

Z. Anfar, H. A. Ahsaine, M. Zbair, A. Amedlous, A. A. El-Fakir, A. Jada et al., “Recent trends on numerical investigations of response surface methodology for pollutants adsorption onto activated carbon materials: A review,” Critical Reviews in Environmental Science and Technology, vol. 50, no. 10, Jul. 2020. [Online]. Available: https://doi.org/10.1080/10643389.2019.1642835

R. Foroutan, S. J. Peighambardoust, R. Mohammadi, M. Omidvar, G. A. Sorial, and B. Ramavandi, “Influence of chitosan and magnetic iron nanoparticles on chromium adsorption behavior of natural clay: Adaptive neuro-fuzzy inference modeling,” International Journal of Biological Macromolecules, vol. 151, May 2020. [Online]. Available: https://doi.org/10.1016/j.ijbiomac.2020.02.202

J. Geng, Y. Yin, Q. Liang, Z. Zhu, and H. Luo, “Polyethyleneimine cross-linked graphene oxide for removing hazardous hexavalent chromium: Adsorption performance and mechanism,” Chemical Engineering Journal, vol. 361, Apr. 2019. [Online]. Available: https://doi.org/10.1016/j.cej.2018.10.141

M. E. González-López, C. M. Laureano-Anzaldo, A. A. Pérez-Fonseca, M. Arellano, and J. R. Robledo-Ortíz, “Chemically modified polysaccharides for hexavalent chromium adsorption,” Separation & Purification Reviews, vol. 50, no. 4, Jun. 2020. [Online]. Available: https://doi.org/10.1080/15422119.2020.1783311

B. O. Otunola and O. O. Ololade, “A review on the application of clay minerals as heavy metal adsorbents for remediation purposes,” Environmental Technology & Innovation, vol. 18, May 2020. [Online]. Available: https://doi.org/10.1016/j.eti.2020.100692

M. W. Amer, J. S. Aljariri-Alhesan, S. Ibrahim, G. Qussay, M. Marshall, and O. S. Al-Ayed, “Potential use of corn leaf waste for biofuel production in Jordan (physio-chemical study),” Energy, vol. 214, Jan. 2021. [Online]. Available: https://doi.org/10.1016/j.energy.2020.118863

J. Ponce, J. G. D. Silva-Andrade, L. N. dos Santos, M. Keller-Bulla, B. C. Bolanho-Barros, S. L. Favaro et al., “Alkali pretreated sugarcane bagasse, rice husk and corn husk wastes as lignocellulosic biosorbents for dyes,” Carbohydrate Polymer Technologies and Applications, vol. 2, Dec. 2021. [Online]. Available: https://doi.org/10.1016/j.carpta.2021.100061

G. Henderson, D. Neuville, and R. Downs, “Spectroscopic methods in mineralogy and material sciences,” in Reviews in Mineralogy & Geochemistry. Berlin, Boston: De Gruyter, 2014. [Online]. Available: https://doi.org/10.1515/9781614517863

E. D. Revellame, D. L. Fortela, W. Sharp, R. Hernandez, and M. E. Zappi, “Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review,” Cleaner Engineering and Technology, vol. 1, Dec. 2020. [Online]. Available: https://doi.org/10.1016/j.clet.2020.100032

E. H. Gürkan, B. Ílyas, and Y. Tibet, “Adsorption performance of heavy metal ions from aqueous solutions by a waste biomass-based hydrogel: Comparison of isotherm and kinetic models,” International Journal of Environmental Analytical Chemistry, vol. 103, no. 6, May 2023. [Online]. Available: https://doi.org/10.1080/03067319.2021.1873314

F. Xiao, J. Cheng, W. Cao, C. Yang, J. Chen, and Z. Luo, “Removal of heavy metals from aqueous solution using chitosan-combined magnetic biochars,” Journal of Colloid and Interface Science, vol. 540, Mar. 2019. [Online]. Available: https://doi.org/10.1016/j.jcis.2019.01.068

X. Chen, M. F. Hossain, C. Huan, J. Lu, Y. F. Tsang, M. S. Islam et al., “Isotherm models for adsorption of heavy metals from water—a review,” Chemosphere, vol. 307, Nov. 2022. [Online]. Available: https://doi.org/10.1016/j.chemosphere.2022.135545

Descargas

Publicado

2024-12-04

Cómo citar

Herrera-Gavidia, M., Carbonel, D., & Chirinos-Collantes, H. (2024). Adsorción de cromo con un adsorbente compuesto de residuos de maíz y bentonita. Revista Facultad De Ingeniería Universidad De Antioquia. https://doi.org/10.17533/udea.redin.20241249

Número

Sección

Artículo de investigación