Clasificación de anomalías en dispositivos del borde de IIoT

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20250368

Palabras clave:

Detección de anomalías, clasificación de anomalías, redes neuronales, nternet Industrial de las Cosas

Resumen

Una detección temprana de anomalías en Internet Industrial de las Cosas (IIoT) reduce los costos de mantenimiento, minimiza el tiempo de inactividad de la máquina y aumenta la seguridad de la planta. Un clasificador multiclase que detecta eventos, fallas o ataques libera al operador humano de la responsabilidad de identificar la causa de la anomalía, evitando desperdicio de tiempo que podría comprometer el rendimiento y la seguridad del proceso. Con estas cuestiones en mente, este artículo tiene como objetivo determinar si es posible diferenciar entre una falla de temperatura en un dispositivo IIoT, un ataque de negación de servicio a un broker MQTT y un evento causado por una aplicación que se ejecuta en el dispositivo de borde IIoT. Los datos utilizados para realizar la clasificación provienen de una Raspberry Pi 3, concretamente, datos de su CPU (temperatura, carga, memoria libre, paquetes Wi-Fi enviados y recibidos). Se entrenaron algoritmos del tipo k vecinos más cercanos (KNN), bosque aleatorio (RF), máquina de soporte vectorial (SVM) y un perceptrón multicapa (MLP). Teniendo en cuenta métricas como tasa de falsos positivos, tasa de falsos negativos, precisión, F1-score y el tiempo de ejecución, llegamos a la conclusión de que SVM y MLP fueron los mejores métodos para el caso de estudio, debido a la precisión (78,6 y 76,1, respectivamente) y el bajo tiempo de ejecución (17,3 ms y 0,35 ms).

|Resumen
= 21 veces | PDF (ENGLISH)
= 8 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Danny Alexandro Múnera-Ramírez, Universidad de Antioquia

Doctor, Profesor Facultad de Ingeniería

Diana Patricia Tobón-Vallejo, Universidad de Antioquia

Doctor, Profesor Facultad de Ingeniería

Martha Lucía Rodríguez-López, Universidad de Antioquia

Maestra en Ingeniería, Estudiante de Doctorado

Citas

S. Alexandra and M. Vitaliy, “Approaches for data

collection and process standardization in smart

manufacturing: systematic literature review,” Journal

of Industrial Information Integration, p. 100578, 2024.

A. Angelopoulos, E. T. Michailidis, N. Nomikos,

P. Trakadas, A. Hatziefremidis, S. Voliotis, and

T. Zahariadis, “Tackling faults in the industry 4.0 era—a

survey of machine-learning solutions and key aspects,”

Sensors, vol. 20, no. 1, p. 109, 2019.

C. Ni and S. C. Li, “Machine learning enabled industrial

iot security: Challenges, trends and solutions,” Journal of

Industrial Information Integration, p. 100549, 2024.

E. Luján, A. Otero, S. Valenzuela, E. Mocskos, L. A.

Steffenel, and S. Nesmachnow, “An integrated platform for

smart energy management: the cc-sem project,” Revista

Facultad de Ingeniería Universidad de Antioquia, no. 97,

pp. 41–55, 2020.

M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile

networks and applications, vol. 19, no. 2, pp. 171–209, 2014.

A. Karkouch, H. Mousannif, H. Al Moatassime, and

T. Noel, “Data quality in internet of things: A

state-of-the-art survey,” Journal of Network and Computer

Applications, vol. 73, pp. 57–81, 2016.

N. Ghosh, K. Maity, R. Paul, and S. Maity, “Outlier

detection in sensor data using machine learning techniques

for iot framework and wireless sensor networks: A brief

study,” in 2019 International Conference on Applied

Machine Learning (ICAML). IEEE, 2019, pp. 187–190.

N. Mohamudally and M. Peermamode-Mohaboob,

“Building an anomaly detection engine (ade) for iot

smart applications,” Procedia computer science, vol. 134,

pp. 10–17, 2018.

S. Afroz, S. A. Islam, S. N. Rafa, and M. Islam, “A two layer

machine learning system for intrusion detection based on

random forest and support vector machine,” in 2020 IEEE

International Women in Engineering (WIE) Conference

on Electrical and Computer Engineering (WIECON-ECE).

IEEE, 2020, pp. 300–303.

N. Moustafa, N. Koroniotis, M. Keshk, A. Y. Zomaya, and

Z. Tari, “Explainable intrusion detection for cyber defences

in the internet of things: Opportunities and solutions,”

IEEE Communications Surveys & Tutorials, 2023.

Y. Wang, M. Perry, D. Whitlock, and J. W. Sutherland,

“Detecting anomalies in time series data from a

manufacturing system using recurrent neural networks,”

Journal of Manufacturing Systems, 2020.

G. Tertytchny, N. Nicolaou, and M. K. Michael,

“Classifying network abnormalities into faults and attacks

in iot-based cyber physical systems using machine learning,”

Microprocessors and Microsystems, vol. 77, p. 103121,

M. Rodríguez, D. P. Tobón, and D. Múnera, “Anomaly

classification in industrial internet of things: A review,”

Intelligent Systems with Applications, p. 200232, 2023.

Z.-X. Guo and P.-L. Shui, “Anomaly based sea-surface small

target detection using k-nearest neighbor classification,”

IEEE Transactions on Aerospace and Electronic Systems,

vol. 56, no. 6, pp. 4947–4964, 2020.

S. Rani, K. Tripathi, Y. Arora, and A. Kumar, “Analysis

of anomaly detection of malware using knn,” in 2022

nd International Conference on Innovative Practices in

Technology and Management (ICIPTM), vol. 2. IEEE,

, pp. 774–779.

A. Abid, A. Kachouri, A. B. F. Guiloufi, A. Mahfoudhi,

N. Nasri, and M. Abid, “Centralized knn anomaly

detector for wsn,” in 2015 IEEE 12th International

Multi-Conference on Systems, Signals & Devices (SSD15).

IEEE, 2015, pp. 1–4.

P. Naraei, A. Abhari, and A. Sadeghian, “Application of

multilayer perceptron neural networks and support vector

machines in classification of healthcare data,” in 2016

Future Technologies Conference (FTC). IEEE, 2016, pp.

–852.

S. Shakya and S. Sigdel, “An approach to develop a hybrid

algorithm based on support vector machine and naive bayes

for anomaly detection,” in 2017 International Conference

on Computing, Communication and Automation (ICCCA).

IEEE, 2017, pp. 323–327.

Scikit-Learn, “sklearn.svm.SVC,” https://scikit-learn.org/

stable/modules/generated/sklearn.svm.SVC.html, 2022,

[Online; accessed 10-August-2022].

T.-H. Lin and J.-R. Jiang, “Anomaly detection with

autoencoder and random forest,” in 2020 International

Computer Symposium (ICS). IEEE, 2020, pp. 96–99.

K. Bhuva, K. Srivastava et al., “Comparative study of the

machine learning techniques for predicting the employee

attrition,” IJRAR-International Journal of Research and

Analytical Reviews (IJRAR), vol. 5, no. 3, pp. 568–577,

R. Porteiro, L. Hernández-Callejo, and S. Nesmachnow,

“Electricity demand forecasting in industrial and residential

facilities using ensemble machine learning,” Revista

Facultad de Ingeniería Universidad de Antioquia, no. 102,

pp. 9–25, 2022.

Y.-C. Lai, K.-Z. Zhou, S.-R. Lin, and N.-W. Lo,

“F1ow-based anomaly detection using multilayer

perceptron in software defined networks,” in 2019

nd International Convention on Information

and Communication Technology, Electronics and

Microelectronics (MIPRO). IEEE, 2019, pp. 1154–1158.

H. Zhang, S. Shen, and Y. Shen, “Power system transient

stability evaluation based on multilayer perceptron neural

network,” in 2021 China Automation Congress (CAC).

IEEE, 2021, pp. 3313–3316.

T. Huuhtanen and A. Jung, “Anomaly location detection

with electrical impedance tomography using multilayer

perceptrons,” in 2020 IEEE 30th International Workshop

on Machine Learning for Signal Processing (MLSP).

IEEE, 2020, pp. 1–6.

L. Van Efferen and A. M. Ali-Eldin, “A multi-layer

perceptron approach for flow-based anomaly detection,” in

international symposium on networks, computers and

communications (ISNCC). IEEE, 2017, pp. 1–6.

S. Ranjeeth, V. A. K. Kandimalla et al., “Predicting

diabetes using outlier detection and multilayer perceptron

with optimal stochastic gradient descent,” in 2020

IEEE India Council International Subsections Conference

(INDISCON). IEEE, 2020, pp. 51–56.

X.-J. Shen, Y. Dong, J.-P. Gou, Y.-Z. Zhan, and J. Fan,

“Least squares kernel ensemble regression in reproducing

kernel hilbert space,” Neurocomputing, vol. 311, pp.

–244, 2018.

B. B. Hazarika, D. Gupta, and P. Borah, “An

intuitionistic fuzzy kernel ridge regression classifier for

binary classification,” Applied Soft Computing, vol. 112, p.

, 2021.

S. Akila and U. S. Reddy, “Credit card fraud detection

using non-overlapped risk based bagging ensemble (nrbe),”

in 2017 IEEE international conference on computational

intelligence and computing research (ICCIC). IEEE, 2017,

pp. 1–4.

Y. Zahid, M. A. Tahir, and M. N. Durrani, “Ensemble

learning using bagging and inception-v3 for anomaly

detection in surveillance videos,” in 2020 IEEE

International Conference on Image Processing (ICIP).

IEEE, 2020, pp. 588–592.

X. Berger, “RPi-Monitor,” https://xavierberger.github.

io/RPi-Monitor-docs/index.html, 2018, [Online; accessed

-August-2022].

Y. Lu, S. Chai, Y. Suo, F. Yao, and C. Zhang, “Intrusion

detection for industrial internet of things based on deep

learning,” Neurocomputing, vol. 564, p. 126886, 2024.

Scikit-Learn, “sklearn-linear model Ridge,” https:

//scikit-learn.org/stable/modules/generated/sklearn.

linear_model.Ridge.html, 2022, [Online; accessed

-August-2022].

——, “Sklearn.ensemble.BaggingClassifier,” https:

//scikit-learn.org/stable/modules/generated/sklearn.

ensemble.BaggingClassifier.html, 2022, [Online; accessed

-August-2022].

RStudioCloud, “RStudio Cloud,” https://rstudio.cloud/,

, [Online; accessed 10-July-2022].

G. Prashanth, V. Prashanth, P. Jayashree, and

N. Srinivasan, “Using random forests for network-based

anomaly detection at active routers,” in 2008 International

Conference on Signal Processing, Communications and

Networking. IEEE, 2008, pp. 93–96

Descargas

Publicado

2025-03-17

Cómo citar

Múnera-Ramírez, D. A., Tobón-Vallejo, D. P., & Rodríguez-López, M. L. (2025). Clasificación de anomalías en dispositivos del borde de IIoT. Revista Facultad De Ingeniería Universidad De Antioquia. https://doi.org/10.17533/udea.redin.20250368

Número

Sección

Artículo de investigación