A skew test on financial returns in the Colombian market
DOI:
https://doi.org/10.17533/udea.le.n80a3Keywords:
Investment Decisions, Financial Economics, Specific Distributions, Behavioral FinanceAbstract
The characterization of financial returns depends heavily on probabilistic behavior, which can be ill-fitted, thus leading to inappropriate economic decisions concerning asset pricing, portfolio allocation and/or the measurement of market risk. In this paper, we propose a test to determine the adjustment of the returns of the General Index of the Colombian Stock Exchange (IGBC) to the following distributions: Normal, Skew Normal, and Skew T. In addition, we measure the level of bias and compare our test’s performance with an alternative test used only for detecting asymmetry. We find that the proposed test allows for characterizing returns in the Colombian stock market with one of the probability distributions, unlike the other test, which only provides a warning about the existence of bias and does not ascertain the distribution representing its behavior.
Downloads
References
Arellano-Valle, Reinaldo; Bolfarine, Heleno & Lachos, Víctor (2005). “Skew- Normal Linear Mixed Models”, Journal of Data Science, Vol. 3, pp. 415–438.
Azzalini, Adelchi (1985). “A class of distributions which includes the Normal ones”, Scandinavian Journal of Statistics, Vol.12, No. 2, pp. 171–178.
Azzalini, Adelchi & Dalla Valle, Alessandra (1996). “The Multivariate Skew-Normal Distribution”, Biometrika, Vol.83, No.4, pp. 715–726.
Azzalini, Adelchi & Capitanio, Antonella (1999). “Statistical applications of the multivariate skew Normal distribution”, Journal of the Royal Statistical Society: Series B, Vol. 61, No. 3, pp. 579–602. Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/1467-9868.00194/abstract (Abril de 2013).
Bolfarine, Heleno; Montenegro, Lourdes & Lachos, Víctor (2007). “Influence Diagnostics for Skew-Normal Linear Mixed Models”, Sankhya: The Indian Journal of Statistic, Vol. 69, Part. 4, pp. 648–670.
Caicedo, Edinson; Claramunt, Mercé & Casanovas, Monserrat (2011a). “Teoría actuarial en la cuantificación de las pérdidas por exposición a riesgo de crédito: una aplicación al mercado colombiano”, Academia: Revista Latinoamericana de Administracion, No. 47, pp. 112–125. Recuperado de: http://revistaacademia.uniandes.edu.co/index.php/Cladea/article/ viewFile/421/492 (Abril de 2013).
Caicedo, Edinson; Claramunt, Mercé & Casanovas, Monserrat (2011b). “Medición del riesgo de crédito mediante modelos estructurales: una aplicación al mercado colombiano”,Cuadernos de Administración, Vol. 24, No. 42, pp. 73–100. Recuperado de: http://www.redalyc.org/ pdf/205/20520042004.pdf (Abril de 2013).
Chunhachinda, Pornchai; Dandapani, Krishnan; Hamid, Shahid & Prakash, Arun (1997). “Portfolio selection and skewness: Evidence from international stock markets”, Journal of Banking & Finance,Vol. 21, Issue 2, pp. 143–167. Recuperado de: http://www.sciencedirect.com/science/ article/pii/S0378426696000325 (Septiembre de 2013).
Dubova, Irina (2005). “La validación y aplicabilidad de la teoría de portafolio en el caso colombiano”, Cuadernos de Administración, Vol. 18, No.30, pp. 241–279.
Duran−Vasquez, Rocío; Lorenzo−Valdes, Arturo & Ruiz−Porras, Antonio (2013). “A GARCH model with autorregresive conditional asym¬metry to model time-series: An application to the returns of the Mexican stock market index”, MPRA Paper, No. 46328. Munich Personal Re-PEc Archive. Recuperado de: http://mpra.ub.uni-muenchen.de/46328/ (Abril de 2013).
Fernández, Horacio (2010a). “Egarch: un modelo asimétrico para estimar la volatilidad de series financieras”, Revista Ingenierías Universidad de Medellín, Vol. 9, No.16, pp. 49–60.
Fernández, Horacio (2010b). “Una aplicación del modelo EGARCH para estimar la volatilidad de series financieras”, Revista Ingenierías Universidad de Medellín, Vol. 9, No.17, pp. 95–104. Recuperado de: http://www. redalyc.org/articulo.oa?id=75017164005 (Enero de 2013).
Grajales, Carlos & Pérez, Fredy (2010). “Valor en riesgo para un portafolio con opciones financieras”, Revista Ingenierías Universidad de Medellín, Vol.9, No. 17, pp. 105–118. Recuperado de: http://www.redalyc.org/ pdf/750/75017164014.pdf (Mayo de 2013).
Hull, John (2009). Introducción a los mercados de futuros y opciones (6ta. Ed.). Mexico D.F.:Pearson.
León, Carlos & Vivas, Francisco (2010). “Dependencia de largo plazo y la regla de la raíz del tiempo para escalar la volatilidad en el mercado colombiano”, Borradores de economía, No. 603. Banco de la República de Colombia.
Lisi, Francesco (2007). “Testing asymmetry in financial time series”, Quantitative Finance, Vol. 7, Issue 6, pp. 687–696.
Mandelbrot, Benoît & Hudson, Richard (2006). Fractales y finanzas (1a Ed.). Barcelona: Editorial Tusquets.
Pérez, Fredy & Fernández, Horacio (2006). “Análisis de la volatilidad del índice general de la bolsa de valores de Colombia utilizando modelos ARCH”, Revista de Ingenierías Universidad de Medellín, Vol. 5, No. 8, pp. 13–33. Recuperado de: http://www.redalyc.org/pdf/750/75050803.pdf (Mayo de 2013).
Peters, Edgar E. (1994). Fractal Market Analysis: Applying Chaos Theory to Investment and Economics. New York: Wiley.
Valencia, Marisol (2010). Estimación en modelos lineales mixtos con datos continuos usando transformaciones y distribuciones no normales. Tesis para optar al título de Magíster en Estadística. Escuela de Estadística. Univer¬sidad Nacional de Colombia, Sede Medellín.
Vera, Rocío (2005). “Reseña de la metodología de construcción de los indi¬cadores más utilizados en Colombia: IPC, IPP, ITCR, IGBC”, Apuntes de Economía, No. 6. Recuperado de: http://www.icesi.edu.co/departamentos/economia/publicaciones/docs/Apecon6.pdf (Abril de 2013).
Vernic, Raluca (2005). “On the multivariate Skew-Normal distribution and its scale mixtures”, An. St. Univ. Ovidius Constanta, Vol. 13, No. 2, pp. 83–96. Recuperado de: http://www.emis.ams.org/journals/ASUO/ mathematics/pdf10/83_96_RVernic.pdf (Junio de 2013).
Published
How to Cite
Issue
Section
License
This page, by Universidad de Antioquia, is licensed under a Creative Commons Attribution License.
Authors who publish with this journal agree to retain copyright and grant the journal right of first publication, with the article licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License allowing others to share it as long as they acknowledge its authorship and original publication in this journal.
Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), provided that these arrangements be not for profit and the journal be acknowledged as the original source of publication.
Authors are permitted and encouraged to post their papers online (e.g., in institutional repositories or on their websites), as it can lead to valuable exchanges as well as greater citation of the published work.