Evaluación de dos formulaciones de vacuna antiaftosa oleosa bivalente (O1 campos y A24 cruzeiro), preparadas con dos sistemas diferentes de purificación y concentración

Authors

  • Néstor Mondragón
  • Víctor Vera
  • Guillermo A. Restrepo

DOI:

https://doi.org/10.17533/udea.rccp.324101

Keywords:

antigenic mass, Food and Mouth Disease Virus (FMDV), perceptual expected protection (EPP), proteins associated to the capsid (PC), proteins non associated to the capsid (PNC)

Abstract

Resumen

El presente estudio evaluó el efecto de la masa antigénica y de diferentes métodos de  purificación y concentración del virus de Fiebre Aftosa en la inducción de respuesta de anticuerpos específicos contra proteínas asociadas a la cápside (PC) y no asociadas a la cápside (PNC) en bovinos inmunizados con vacuna oleosa bivalente (A24 Cruzeiro y O1 Campos). Se formularon cuatro vacunas  con diferente carga viral por dosis (Vacuna 1, 16.9; Vacuna 2, 8.8; Vacuna 3, 17.9; y Vacuna 4, 7.7 ug/dosis). Se inmunizaron 32 bovinos de 12 a 24 meses de edad (ocho por cada vacuna) a los días 0 y 30.  La respuesta serológica contra PC fue evaluada con la prueba de ELISA CFL en términos de Expectativa de Protección Porcentual (EPP) al día 30 y la reactividad a PNC se determinó con el sistema ELISA-I 3ABC/EITB al día 60. Las vacunas formuladas con antígenos virales purificados con sales indujeron mayor EPP promedio tanto para virus A24 Cruzeiro (Vacuna 3, 89.8%; Vacuna  4, 83.4%) como O1 Campos (Vacuna 3, 92.6%; Vacuna 4, 82.2%) en comparación con los antígenos tratados con Polietilen Glicol cuyos resultados de EPP para virus A24 Cruzeiro fueron: Vacuna 1,  80.2%; Vacuna 2, 71.8%; y para virus O1 Campos: Vacuna 1, 78.1%; Vacuna 2, 73.7%. Adicionalmente, un bovino inoculado con la vacuna 3 fue positivo a PNC a los 60 días post vacunación (dpv). En este estudio se encontró que, dependiendo del proceso de concentración y purificación de antígenos, se pueden obtener resultados diferentes así: para los virus tratados con sales, con una baja (vacuna 4) y alta (vacuna 3) carga antigénica, es posible lograr muy buena inmunogenicidad, mientras que  con alta carga antigénica se tiene mayor riesgo de inducir reactividad a PNC;  y en el caso de los virus tratados con PEG se obtuvo buena protección, sin evidencia de  interferencia en la determinación de los animales infectados cuando fueron evaluados por el sistema de detección de anticuerpos contra PNC.

Summary

This project evaluated two methods for viral concentration and purification and the effect of antigenic mass of Foot and Mouth Disease Virus (FMDV) in the capacity of bivalent vaccine products (A24 Cruzeiro y O1 Campos) to induce antibodies against proteins associated to the capsid (CP) and proteins non associated to the capsid (NCP) of the virus, in cattle. Groups of 8 bovines (aged 12 to 24 months) were immunized on day 0 an 30 with one of four vaccines that were formulated with a different viral load (vaccine 1, 16.9; vaccine 2, 8.8; vaccine 3, 17.9 and vaccine 4, 7.7 ug/dose). The antibody response against CP detected by ELISA CF,L was evaluated on days 30 and 60; the reactivity against NCP was measured by ELISAI 3ABC/EITB. Antigens treated with salts induced higher reactivity against CP compared those treated with PEG. One of the animals vaccinated with salt treated antigens was positive to NCP. We found that different results could be obtained depending of the process for antigen concentration and purification:  virus treated with salts, with either a high or a low  antigenic load (vaccines 3 and 4) induced a strong immunity, but with a high antigenic load  there is a major risk of inducing reactivity against NCP. In the PEG treatment (vaccines 1 and 2), we obtained good protection, without interference in the assessment of the infected animals when they were evaluated by ELISA-3ABC-I/EITB for epidemiological purposes.

|Abstract
= 107 veces | PDF
= 37 veces|

Downloads

Download data is not yet available.

References

Aggarwal N, Barnett PV. Antigenic sites of foot-and-mouth disease virus (FMDV): an analysis of the specificities of anti-FMDV antibodies after vaccination of naturally susceptible host species. J Gen Virol 2002; 83 : 775-782. DOI: https://doi.org/10.1099/0022-1317-83-4-775

Bahnemann HG. Inactivation of viral antigens for vaccine preparation with particular reference to the application of binary ethylenimine. Vaccine 1990; 8: 299-303. DOI: https://doi.org/10.1016/0264-410X(90)90083-X

Barteling SJ. Development and performance of inactivated vaccines against foot and mouth disease. Rev Sci Tech 2002; 12: 577-588. DOI: https://doi.org/10.20506/rst.21.3.1361

Barteling SJ, Vreeswijk J. Developments in foot-and-mouth disease vaccines. Vaccine 1991; 9: 75–88. DOI: https://doi.org/10.1016/0264-410X(91)90261-4

Bergmann IE, Astudillo V, Malirat V, Neitzert E. Serodiagnostic strategy for estimation of foot-and-mouth disease viral activity through highly sensitive immunoas says using bioengineered nonstructural proteins. Vet Q 1998; 20 Suppl 2:S6–9. DOI: https://doi.org/10.1080/01652176.1998.9694952

Bergmann IE, Malirat V, Neitzert E, Beck E, Panizzutti N, et al. Improvement of a serodiagnostic strategy for foot-and-mouth disease virus surveillance in cattle under systematic vaccination: a combined system of an indirect ELISA-3ABC with an enzyme-linked immunoelectrotransfer blot assay. Arch Virol 2000; 145: 473–489. DOI: https://doi.org/10.1007/s007050050040

Bronsvoort BM, Sorensen KJ, Anderson J, Corteyn A, Tanya VN, et al. Comparison of two 3ABC enzyme-linked immunosorbent assays for diagnosis of multiple-serotype foot-and-mouth disease in a cattle population in an area of endemicity. J Clin Microbiol 2004; 42: 2108-2114. DOI: https://doi.org/10.1128/JCM.42.5.2108-2114.2004

Clavijo A, Wright P, Kitching P. Developments in diagnostic techniques for differentiating infection from vaccination in foot-and-mouth disease. Vet J 2004; 167: 9-22. DOI: https://doi.org/10.1016/S1090-0233(03)00087-X

De Diego M, Brocchi E, Mackay D, De Simone F. The nonstructural polyprotein 3ABC of foot-and-mouth disease virus as a diagnostic antigen in ELISA todifferentiate infected from vaccinated cattle. Arch Virol 1997; 142: 2021–2033. DOI: https://doi.org/10.1007/s007050050219

Doel TR. Optimisation of the immune response to foot-and-mouth disease vaccines. Vaccine 1999; 17: 1767-1771 DOI: https://doi.org/10.1016/S0264-410X(98)00444-7

Doel TR. Repeated administration of maximum payload emergency vaccines made from inactivated purified antigen concentrates do not induce significant titles of antibodies against non-structural proteins of foot-and-mouth disease virus. In Report of a Session of the Research Group of the Standing Technical Committee of the European Commission for the Control of Foot-and-Mouth Disease –EUFMD-; Rome: Island of Moen; 2001. p. 88-92.

Doel TR. FMD vaccines. Virus Res 2003; 91: 81-99. DOI: https://doi.org/10.1016/S0168-1702(02)00261-7

Doel TR. Natural and vaccine induced immunity to FMD. Curr Top Microbiol Immunol 2005; 288: 103-131. DOI: https://doi.org/10.1007/3-540-27109-0_5

Doel TR, Chong WKT. Comparative immunogenicity of 146S, 75S, and 12S particles of foot-and-mouth disease virus. Arch Virol 1982; 73: 185–191. DOI: https://doi.org/10.1007/BF01314726

Doel TR, Collen T. Quantitative assessment of 146S particles of FMDV in preparation destined for vaccines. J Biol Stand 1982; 10: 69-81. DOI: https://doi.org/10.1016/S0092-1157(82)80028-0

Espinoza AM, Maradei E, Mattion N, Cadenazzi G, Maddonni G, et al. Foot-and-mouth disease polyvalent oil vaccines inoculated repeteadly in cattle do not induce detectable antibodies to non-structural proteins when evaluated by various assays. Vaccine 2004; 23: 69-77. DOI: https://doi.org/10.1016/j.vaccine.2004.05.007

Gradi A, Foeger N, Strong R, Svitkin YV, Sonenberg N, et al. Cleavage of eukaryotic translation initiation factor 4GII within foot-and-mouth disease virus-infected cells: identification of the L-protease cleavage site in vitro. J Virol 2004; 78: 3271-3278. DOI: https://doi.org/10.1128/JVI.78.7.3271-3278.2004

Höhlich BJ, Wiesmüller KH, Haas B, Gerner W, Correa R, et al. Induction of an antigen-specific immune response and partial protection of cattle against challenge infection with foot-and-mouth disease virus (FMDV) after lipopeptide vaccination with FMDV-specific B-cell epitopes. J Gen Virol 2003; 84: 3315–3324. DOI: https://doi.org/10.1099/vir.0.19366-0

ICA. Instituto Colombiano Agropecuario 2005. Resolución No. 001166 [15 de Abril de 2005] URL: http://www.ica.gov.co/

Iyer AV, Ghosh S, Singh SN, Deshmukh RA. Evaluation of three ‘ready to formulate’ oil adjuvants for foot-and-mouth disease vaccine production. Vaccine 2001; 19: 1097-1105. DOI: https://doi.org/10.1016/S0264-410X(00)00337-6

Kweon CH, Ko YJ, Kim WI, Lee SY, Nah JJ, et al. Development of a foot-and-mouth disease NSP ELISA and its comparison with differential diagnostic methods. Vaccine 2003; 21: 1409-1414. DOI: https://doi.org/10.1016/S0264-410X(02)00684-9

Lubroth J, Lopez A, Ramalho AK, Meyer RF, Brown F, et al. Cattle response to foot-and-mouth disease virus nonstructural proteins as antigens within vaccines produced using different concentrations. Vet Q 1998; 20 Suppl 2: S13–17. DOI: https://doi.org/10.1080/01652176.1998.9694955

Mackay DKJ, Forsyth MA, Davies PR, Berlinzani A,Belsham GJ, et al. Differentiating infection from vaccination in foot-and-mouth disease using a panel of recombinant, non-capsideal proteins in ELISA. Vaccine 1998; 16: 446–459. DOI: https://doi.org/10.1016/S0264-410X(97)00227-2

Morgan DO, Bachrach HL, McKercher PD. Immunogenicity of namogram to milligram quantities of inactivated foot-and-mouth disease virus I Relative virus-neutralizing potency of guinea pig sera. Appl Microbiol 1969; 17: 441-445. DOI: https://doi.org/10.1128/am.17.3.441-445.1969

Neitzert E, Beck E, Augé de Mello P, Gomes I, Bergmann IE. Expression of the Aphthovirus RNA polymerase gene in Escherichia coli and its use together with other bioengineered nonstructural antigens in detection of late persistent infection. Virology 1991; 184: 799-804. DOI: https://doi.org/10.1016/0042-6822(91)90456-L

OIE. Organización Internacional de Epizootias . Foot and Mouth Disease Part 2, Sectión 2.1, Chapter 2.1.1. In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2004; URL: http: //www.oie.int/eng/normes/mmanual/A_summry.htm

PANAFTOSA–OPS/OMS. Elisa Competición fase líquida (ELISA-CFL) y su uso en control de potencia de vacunas antiaftosa. VII seminario internacional de control de vacuna antiaftosa. Rio de Janeiro, 2001. P. 13 - 20.

Patil PK, Bayry J, Nair SP, Gopalakrishna S, Sajjanar CM, et al. Early antibody responses of cattle for foot-and-mouth disease quadrivalent double oil emulsion vaccine. Vet Microbiol 2002; 87: 103-109. DOI: https://doi.org/10.1016/S0378-1135(02)00046-9

Pay TWF, Hingley PJ. Correlation of 146S antigen dose the serum neutralizing antibody response and the level of protection induced in cattle by foot-and-mouth disease vaccines. Vaccine 1987; 5: 60–64. DOI: https://doi.org/10.1016/0264-410X(87)90011-9

Porter AG. Picornavirus nonstructural proteins: emerging roles in virus replication and inhibition of host cell functions. J Virol 1993; 67: 6917–6921. DOI: https://doi.org/10.1128/jvi.67.12.6917-6921.1993

Rodriguez A, Dopazo J, Saiz JC, Sobrino F. Immunogenicity of non-structural proteins of foot-and-mouth disease virus: differences between infected and vaccinated swine. Arch Virol 1994; 136: 123–131. DOI: https://doi.org/10.1007/BF01538822

Sorensen KJ, Madsen KG, Madsen ES, Salt JS, Nqindi J, et al. Differentiation of infection from vaccination in foot and mouth disease by the detection of antibodies to the non-structural proteins 3D, 3AB, and 3ABC in ELISA using antigens expressed in baculovirus. Arch Virol 1998; 143: 1461–1476. DOI: https://doi.org/10.1007/s007050050390

Downloads

Published

2016-07-22

How to Cite

Mondragón, N., Vera, V., & Restrepo, G. A. (2016). Evaluación de dos formulaciones de vacuna antiaftosa oleosa bivalente (O1 campos y A24 cruzeiro), preparadas con dos sistemas diferentes de purificación y concentración. Revista Colombiana De Ciencias Pecuarias, 19(4), 9. https://doi.org/10.17533/udea.rccp.324101

Issue

Section

Original research articles

Most read articles by the same author(s)