Alimento vivo enriquecido con ácidos grasos para el desarrollo larvario de peces


  • Carlos Mario Rivera Narváez
  • Mónica Botero Aguirre



fatty acids, larval development, live feed.



The larvae nutrition represents one of the main problems in the great scale production of fish. The primary objective of this review is to enlarge the knowledge of the factors that take part in the organic and digestive development of fish and the way these factors can affect their growth and survival. The development of digestive tract in the larvae of fish is conditioned by anatomo-physiological aspects that allow pos-larvae to adapt biochemical and histologically to periods of transition between the end of the reabsorption of the yolk sac and the beginning of consumption of live feed, and from the consumption of live feed to a balanced commercial diet. The species used in the first feeding of post-larvae affect their survival and development. An inadequate provision could cause a high mortality due to the fact that the zooplankter species that proliferate everywhere not always satisfy the growing fish nutritional requirements, their volume growth is inferior to the required volume and, on top of that, a wrong production handling favors the proliferation of depredating planktonic species. Bearing in mind that one of the main nutrients t0hat live feed contributes, are the non-saturated and polyunsaturated fatty acids, nutritional deficiencies in the live feed can be complemented with the enrichment of fatty acids, which are essential components in the processes of pigmentation, production of prostaglandins and immunological defenses, plus retinal development required to improve visual capacity and sharpness, among others.


= 151 veces | PDF
= 89 veces|


Download data is not yet available.


Anguas B, Civera R, Contreras M, Rueda R, Guillaume J. Preliminary study on the timing of weaning of spotted sand bass (Paralabrax maculatofasciatus) larvae with a prepared diet: effects on growth and survival. J Appl Aquacult 2000; 10:11-15.

Bell J, McEvoy L, Estevez A, Shields R, Sargent J. Optimising lipid nutrition in fi rst-feeding fl atfi sh larvae. Aquaculture 2003; 227:211-220.

Bell M, McEvoy L, Navarro J. Defi cit of docosahexaenoyl phospholipid in the eyes of larval sea bass fed an essential fatty acid defi cient diet. J Fish Biol 1996; 49: 941-952.

Bell J, Tocher D, Sargent J. Effect of Supplementation whit 20 :3 -6, 20 :4 -6 and 20:5 -3 on the Production of Prostaglandins E and F of the 1-, 2- and 3- series in Turbot (Scopthalmus maximus) Brain Astroglial Cells in Primary Culture. Biochim Biophys Acta 1994; 1211:335-342.

Brinkmeyer R, Holt G. Highly unsaturated fatty acids in diets for red drum (Sciaenops ocellatus) larvae. Aquaculture 1998; 161:253-268.

Cahu C, Zambonino J and Takeuchi T. Nutritional components affecting skeletal development in fi sh larvae. Aquaculture 2003; 227:245-258.

Civera R, Alvarez C, Moyano F. Nutrición y alimentación de larvas de peces marinos. VII memorias del VII simposium internacional de nutrición acuícola. Hermosillo, Sonora, México. 2004.

Copeman L, Parrish C, Brown J, Harel M. Effects of Docosahexaenoic, Eicosapentaenoic, and Arachid onic Acids on the Early Growth, Survival, Lipid Composition and Pigmentation of Yellowtail Flounder (Limanda ferruginea): a Live Food Enrichment Experiment. Aquaculture 2002; 210:285-304.

Deplano M, Díaz J, Connes R, Kentouri-Divanach M, Cavalier F. Appearance of lipid absorption capacities in larvae of the sea bass Dicentrarchus labrax during transition to the exotrophic phase. Mar Biol 1991; 108:361-371.

Díaz N. Efecto de la relación EPA/ADH en larvas de Puye (Galaxias maculatus, Jenyns. 1842), cultivadas en diferentes salinidades. Universidad Católica de Temuco. Tesis de grado, Facultad de Acuicultura y Ciencias Veterinarias, Chile; 2004. 70 p.

Díaz J, Mani-Poset L, Blasco C, Connes R. Cytological detection of the main phases of lipid metabolism during early post-embryonic development in three telost species: Dicentrarchus labrax, Sparus aurata and Stizostedion lucioperca. Aquat Liv ing Resour 2002; 15: 169-178.

Estévez A, Ishikawa M, Kanazawa A. Effects of Arachidonic Acid on Pigmentation and Fatty Acid Composition of Japanese Flounder, Paralichthys olivaceus (Temminck and Schlegel). Centro de Experimentación en Acuicultura. Ribeira. La Coruña, Spain. Aquaculture Research. 1997; 28: 279-289.

Estevez A, Kaneko T, Seikai T, Tagawa M, Tanaka M. ACTH and MSH production in Japanese fl ounder (Paralichthys olivaceus) larvae fed arachidonic acid-enriched live prey. Aquaculture. 2001; 192: 309-319.

Estevez A, Kanazawa A. Fatty acid composition o neural tissues of normally pigmented juveniles of Japanese fl ounder using rotifer and Artemia enriched in -3 HUFA. Fish Sci 1996; 62: 88-93.

Fast M, Muise D, Easy R, Ross N, Johnson S. The effects of Lepeophtheirus salmonis infections on the stress response and immunological status of Atlantic salmon (Salmo salar). Fish & Shellfi sh Immunology 2006; 21: 228-241

Farndale B, Bell J, Bruce M, Bromage N, Oyen F, et al. Dietary lipid composition affects blood leucocyte fatty acid compositions and plasma eicosanoid concentrations in European sea bass (Dicentrarchus labrax). Aquaculture 1999; 179: 335-350.

Gjellesvik D, Lombardo D, Walther B. Pancreatic bile salt dependent lipase from cod (Gadus morhua): purifi cation and properties. Biochim Biosphys Acta 1992; 1124:123-134.

Govoni J, Boehlert G, Watanabe Y. The physiology of digestion in fi sh larvae. Environ Biol Fishes 1986; 16:59-77.

Guillaume J, Kaushik S, Bergot P, Metailler R. Nutrición y Alimentación de peces y Crustáceos. 1ra edición. Madrid España. Ediciones Mundi-prensa; 2004

Han K, Geurden I, Sorgeloos P. Enrichment strategies for Artemia using emulsions providing different levels of -3 highly unsaturated fatty acids. Aquaculture. 2000, 183, 335-347.

Hunter J. Feeding ecology and predation of marine fi sh. In: Marine Fish Larvae: Morpholog, Ecology, and relation to fi sheries. Ed. by R. Lasker. Washington sea grand program, Seattle.1981 p. 34-77.

Izquierdo M, Socorro J, Arantzamendi L, Hernández C. Recent advances in lipid nutrition in fi sh larvae. Fish Physiol Biochem 2000; 22: 97-107.

Izquierdo M, Arakawa T, Takeuchi R, Haroun R, Watanabe T. Effect of -3 HUFA levels in Artemia on growth of larval Japanese fl ounder (Paralicthys oliÍaceus) . Aquaculture 1992; 105: 73-82.

Izquierdo M, Watanabe T, Takeuchi T, Arawa T, Kitajima C. Optimal EFA levels in artemia to meet the EFA requirements of red seabream (Pargos major) Proc. 3rd int. Symp. Feeding and Nutrition in Fish. Toba (Japan). 1989. p 221-232.

Koven W, Barr Y, Lutzky S, Ben-Atia I, Weiss R, et. al. The Effect of Dietary Arachidonic Acid (20:4n-6) on Growth, Survival and Resistance to Handling Stress in Gilthead Seabream (Sparus aurata) Larvae. Aquaculture 2001; 193: 107-122.

Kurokawa T, Shiraishi M, Suzuki T. Quantifi cation of exogenous protease derived from zooplankton in the intestine of Japanese sardine (Sardinops melanotictus) larvae. Aquaculture 1998; 161: 491-499.

Lauff M, Hoffer R. Proteolitic enzymes in fi sh development and the importance of dietary enzymes. Aquaculture 1984; 37: 335-346.

Lazo J, Holt G, Arnold C. Ontogeny of pancreatic enzymes in larval red drum (Sciaenops ocellatus). Aquaculture Nutr ition 2000; 6:183-192.

Lazo J. Conocimiento actual y nuevas perspectivas en el desarrollo de dietas para larvas de peces marinos. In: Cruz S, Ricque-Marie L, Tapia D, Olvera M, Civera R, (Eds.). Avances en Nutrición Acuícola V. Memorias del V Simposium Internacional de Nutrición Acuícola. 19-22 Noviembre, 2000.

Mérida, Yucatá n, México..Lozano I, Plazuelo A, Cañavate J, Cárdenas S. Crecimiento con alimento vivo e inerte de larvas de Hurta, Pagrus auriga(Pisces : Sparidae), en cultivo masivo. CIVA, 2004: 446-455.

Lochman R, Gatlin D. Essential fatty acid requirement of juvenile red drum Sciaenopsocellatus. Fish Physiol Biochem 1993; 12: 2Merchie G, Lavens P, Storch P, Übel U, Nelis H, et al. Infl uence of dietary vitamin C dosage on rodaballo (Scophthalmus maximus) and European sea bass (Dicentrachus labrax) nursery stages. Comp Biochem Physiol 1996; 114:123-133.

Meza O, Benítez J, Paredes B, Gonzales M. Descripción histológica del sistema digestivo en larvas de Chirostoma humboldtianum en la primera alimentación exógena. CIVA, 2002: 313-322.

Meza O, Figueroa G. Crecimiento, Supervivencia y Desarrollo mandibular en Larvas del Pez Blanco Chirostom humboldtianum (Valenciennes) (Atheriniformes: Atherinopsidae), bajo condiciones de Laboratorio. CIVA, 2002: 606-616O’Brien-MacDonald K, Brown JA, Parrish CP. Integrating growth, behavior and digestive enzyme activity in larval Atlantic cod (Gadus morhua): response to rotifer lipids. ICES Mar Sci 2006; 63:275-284.

Ostaszewska T. The sequential differentiation and formation of hepatic and pancreatic structures in asp (Aspius aspius L.) LARVAE Electronic Journal of Polish Agricultural Universities, Fisheries. 2002; 5, Issue 1. Available Online 2002.

Panush R, Delafuente J. Vitamins and Immunocompetence. World Review of Nutrition and Dietetics 1985; 45: 97-132.

Sánchez J. Efecto del acido araquidónico (20:4n-6) en la pigmentación, parámetros productivos e índice de anguiliformidad del puye (Galaxias maculatus, Jenyns, 1842). Tesis de grado. Facultad de Recursos Naturales, Escuela de Acuicultura, Universidad católica de Temuco, Chile, 2005. 71p.

Sánchez M, Ortiz J, Cárdenas S, Sarasquete C. Organogénesis larvaria de la hurta, Pagrus auriga: aproximación histológica e histoquímica del tracto digestivo. En: Libro de Resúmenes del X Congreso Nacional de Acuicultura, Gandía (Valencia). 2005. Editorial de la Universidad Politécnica de Valencia, p. 426-427.

Sarasquete M, Polo A, Yufera M. Histology and histochemistry of the development of the digestive system of larval gilthead seabream, Sparus aurata L. Aquaculture 1995; 130:79-92.

Sargent J, Bell J, Bell M, Henderson R, Tocher D. The metabolism of phospholipids and polyunsaturated fatty acids in fi sh. In: aquaculture fundamental and applied research. Coastal and Estuarine Studies. (Lahiou B & Vitiello P. eds) American Geophysical union. Washington D.C. 1993; 43:103-124.

Sargent J, Bell J, Bell M, Henderson R, Tocher D. Requirement criteria for essential fatty acids. J Appl Ichthyol 1995; 11:183-198.

Sargent J, Bell J, Bell M, Henderson R, Tocher D. Evolution and roles of (-3) polyunsaturated fatty acids in marine organisms in: phospholipids: characterization metabolism and Novel Biological Applications 1995. Pp. 248-259. AOCS Press. Champaign ll.

Sargent J, Bell J, McEvoy L, Tocher D, Estevez A. Recent developments in the essential fatty acid nutrition of fi sh. Aquaculture 1999; 177:191-199.

Sargent J, McEvoy L, Bell J. Requirements, presentation and sources of polyunsaturated fatty acids in marine fi sh larval feeds. Aquaculture 1997; 155: 117-127.

Secombes C, Clements K, Ashton I, Rowley A. The effect of eicosanoids on rainbow trout (Oncorhynchus mykiss), leucocyte proliferation. Vet. Immunol. Immunopathol. 1994; 42:367-378.

Segner H, Rosch R, Schmidt H, Von Poeppinghausen K. Digestive enzymes in larval Coregonus lavaretus L J Fish Biol 1989; 35:249-263.

Shields R, Bell J, Luizi S, Gara B, Bromage N, et. al. Natural copepods are superior to enriched Artemia nauplii as feed for Halibut larvae (Hippoglossus hippoglossus) in terms of survival, pigmentation and retinal morphology: Relation to dietary essential fatty acids. J Nutr 1999; 129:1186-1194

Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 2004; 84:1155-1228.

Smith L. Digestive Functions in Teleost Fishes In Fish Nutrition. J. Halver (Ed.) Academic Press, Inc. London; 1989. p 332-422.Takeuchi T, Toyota M, Watanabe T. Dietary value to red sea bream of Artemia nauplii enriched with EPA and DHA. Abstracts of the Annual Meeting of Japanese Society of Scientifi c Fisheries, Tokyo, 1991; p. 243.

Takeuchi T, Feng Z, Yoseda K, Hirokawa J, Watanabe T. Nutritive value of DHA-enriched for larval cod. Nippon Suisan Gakkaishi 1994; 60:641-652.

Verreth J. I curso internacional sobre nutrición de larvas de peces. Universidad de Antioquia. Medellín, Marzo 15-17. 1999.Vetter R, Houdson R, Arnold C. Energy metabolism in a rapidly developing marinefi sh eggs the red drum Scienops ocellata. Can J Fish. Aquat Sci 1983; 40: 627-634.

Vu T. Etude histoenzymologique des activities proteasiques dans le tube digestif des larves et des adultes de bar, Dicentrarchus labrax (L). Aquaculture 1983; 32: 57-69.

Watanabe T, Izquierdo M, Takeuchi S, Kitajima C. Comparison between eicosapentaeoic acid and docosahexaenoic acid in terms of essential fatty acid effi cacy in larval red sea bream. Nippon Suisan Gakkaishi 1989; 55: 1635-1640.

Watanabe T. Importance of docosahexaenoic acid in marine larval fi sh. J World Aquaculture Soc 1993; 24: 152-161.

Watanabe T. Histological changes in the liver and intestine of freshwater goby larvae during short-term starvation. Bull Jpn Soc Sci Fish. 1985; 51: 707-709.

Watanabe T, Kiron V. Red sea bream Pagurus major. En: Bromage, N.R., Roberts, R.J. Eds., Broodstock Management and Egg and Larvae Quality. Blackwell, Cambridge, MA. 1995; p 398-413.

Watanabe T, Sawada N. Larval development of digestive organs and intestinal absorptive functions in the freshwater goby Chaenogobius annularis. Bull. Tohoku Reg Fish Res Lab 1985; 37:1-10.

Zambonino J, Cahu C. Ontogeny of gastrointestinal tract of marine fi sh larvae. Comparative Biochemistry and Physiology 2001; 130:477-487.




How to Cite

Rivera Narváez, C. M., & Botero Aguirre, M. (2009). Alimento vivo enriquecido con ácidos grasos para el desarrollo larvario de peces. Revista Colombiana De Ciencias Pecuarias, 22(4), 12.



Original research articles

Most read articles by the same author(s)

Similar Articles

> >> 

You may also start an advanced similarity search for this article.