Identifying signatures of recent selection in Holstein cattle in the tropic

Authors

  • Juan C. Rincón Technological University of Pereira, National University of Colombia
  • Albeiro López National University of Colombia
  • Julián Echeverri National University of Colombia

DOI:

https://doi.org/10.17533/udea.rccp.v31n1a06

Keywords:

dairy cattle, genetic mapping, QTLs, selection pressure, single nucleotide polymorphism

Abstract


Background: Holstein cattle have undergone strong selection processes in the world. These selection signatures can be recognized and utilized to identify regions of the genome that are important for milk yield. Objective: To identify recent selection signatures in Holstein from the Province of Antioquia (Colombia), using the integrated haplotype score (iHS) methodology. Methods: Blood or semen was extracted from 150 animals with a commercial kit. The animals were genotyped with the BovineLD chip (6909 SNPs). The editing process was carried out while preserving the loci whose minor allele frequency (MAF) was greater than 0.05. In addition, genotypes with Mendelian errors were discarded using R and PLINK v1.07 software programs. Furthermore, the extended haplotype homozygosity (EHH), iHS and the p-value were determined with the “rehh” package of R language. Results: The minor allele frequencies showed a tendency toward intermediate frequency alleles. In total, 144 focal markers were significant (p < 0.001) for selection signatures. Some chromosomes showed a greater number of signatures than others. Many of the variants were found inside genes, although they were in intronic regions. Some important regions were associated with genes TRAPPC12, PANK3, ZNF16, OPLA and DPYSL4, which are related with cellular transport, excretion or metabolism. Conclusion: Identifying signatures of selection using the iHS method made it possible to determine some important regions for selection in Holstein cattle in the high tropics, some of which had been previously reported to be associated with quantitative traits loci (QTLs).

|Abstract
= 130 veces | PDF
= 79 veces|

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Juan C. Rincón, Technological University of Pereira, National University of Colombia

Zoot, MSc, PhD., Veterinary Medicine and Zootechnics Program, Technological University of Pereira, Risaralda, Pereira, Colombia. Biodiversity and Molecular Genetics Research Group (BIOGEM), Faculty of Agrarian Sciences, Department of Animal Production, National University of Colombia, Medellín, Colombia.

Albeiro López, National University of Colombia

VM, Zoot, MSc, PhD., Biodiversity and Molecular Genetics Research Group (BIOGEM), Faculty of Agrarian Sciences, Department of Animal Production, National University of Colombia, Medellín, Colombia.

Julián Echeverri, National University of Colombia

Zoot, MSc, PhD., Biodiversity and Molecular Genetics Research Group (BIOGEM), Faculty of Agrarian Sciences, Department of Animal Production, National University of Colombia, Medellín, Colombia

References

ACHF. Asociación Holstein de Colombia: 67 años de historia al servicio de la ganadería en Colombia. Holstein Colombiana 2009; 177:6-13.

Ashwell MS, Heyen DW, Sonstegard TS, Van Tassell CP, Da Y, VanRaden PM, Ron M, Weller JI, Lewin H. Detection of quantitativetrait loci affecting milk production, health, and reproductive traits in Holstein cattle. J Dairy Sci 2004; 87:468-475.

Barrett JC, Fry B, Maller J, Daly MJ. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21:263-265.

Bouwman AC, Bovenhuis H, Visker MHPW, van Arendonk J.M. Genome-wide association of milk fatty acids in Dutch dairy cattle.BMC Genet 2011; 12:43.

Brown GR, Hem V, Katz KS, Ovetsky M, Wallin C, Ermolaeva O, Tolstoy I, Tatusova T, Pruitt KD, Maglott DR, Murphy TD. Gene: A gene-centered information resource at NCBI. Nucleic Acids Res 2105; 43:D36-D42.

Browning BL, Browning SR. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 2009; 84:210-223.

Buitenhuis B, Poulsen NA, Gebreyesus G, Larsen LB. Estimation of genetic parameters and detection of chromosomal regions affecting the major milk proteins and their post translational modifications in Danish Holstein and Danish Jersey cattle. BMC Genet 2016; 17:114.

Cole JB, Wiggans GR, Ma L, Sonstegard TS, Lawlor TJ, CrookerB, Van Tassell CP, Yang J, Wang S, Matukumalli LK, Da Y. Genome-wide association analysis of thirty-one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows. BMC Genomics 2016; 12:408.

Daetwyler HD, Capitan A, Pausch H, Stothard P, van Binsbergen R, Brøndum RF, Liao X, Djari A, Rodriguez SC, Grohs C, Esquerré D, Bouchez O, Rossignol M-N, Klopp C, Rocha D, Fritz S, Eggen A, Bowman PJ, Coote D, Chamberlain AJ, Anderson C, VanTassell CP, Hulsegge I, Goddard ME, Guldbrandtsen B, Lund MS, Veerkamp RF, Boichard D, Fries R, Hayes BJ. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nat Genet 2014.

Druet T, Pérez-Pardal L, Charlier C, Gautier M. Identification of large selective sweeps associated with major genes in cattle. Anim Genet 2013; 44:758-762.

Fay JC, Wu CI. Hitchhiking under positive Darwinian selection. Genetics 2000; 155:1405-1413.

Fortes MRS, Kemper K, Sasazaki S, Reverter A, Pryce JE, Barendse W, Bunch R, McCulloch R, Harrison B, Bolormaa S, Zhang YD, Hawken RJ, Goddard ME, Lehnert SA. Evidence for pleiotropism and recent selection in the PLAG1 region in Australian Beef cattle. Anim Genet 2013; 44:636-647.

Gautier M, Vitalis R. Rehh An R package to detect footprints of selection in genome-wide SNP data from haplotype structure. Bioinformatics 2012; 28:1176-1177.

Grisart B, Coppieters W, Farnir F, Karim L, Ford C, Berzi P, Cambisano N, Mni M, Reid S, Simon P, Spelman R, Georges M, Snell R. Positional candidate cloning of a QTL in dairy cattle: Identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res 2002; 12:222-231.

Gutiérrez-gil B, Wiener P, Richardson RI, Wood JD, Williams JL. Identification of QTL with effects on fatty acid composition of meat in a Charolais × Holstein cross population. Meat Sci 2010; 85:721-729.

Hayes BJ, Lien S, Nilsen H, Olsen HG, Berg P, Maceachernb S, Potter S, Meuwissen THE. The origin of selection signatures on bovine chromosome 6. Anim Genet 2008; 39:105-111.

Hill WG. Estimation of effective population size from data on linkage disequilibrium. Genet Res 1981; 38:209-216.

Höglund JK, Buitenhuis AJ, Guldbrandtsen B, Su G, Thomsen B, Lund MS. Overlapping chromosomal regions for fertility traits and production traits in the Danish Holstein population. J Dairy Sci 2009; 92:5712-5719.

Hu ZL, Park CA, Wu XL, Reecy JM. Animal QTLdb: An improved database tool for livestock animal QTL/association data dissemination in the post-genome era. Nucleic Acids Res 2013; 41.

Illumina. BovineLD Genotyping BeadChip 2013; 3-6; [Access date: July 20, 2016].

Iso-Touru T, Sahana G, Guldbrandtsen B, Lund MS, Vilkki J. Genome-wide association analysis of milk yield traits in Nordic Red Cattle using imputed whole genome sequence variants. BMC Genet 2016; 17:55.

Karim L, Takeda H, Lin L, Druet T, Arias JAC, Baurain D, Cambisano N, Davis SR, Farnir F, Grisart B, Harris BL, Keehan MD, Littlejohn MD, Spelman RJ, Georges M, Coppieters W. Variants modulating the expression of a chromosome domain encompassing PLAG1 influence bovine stature. Nat Genet 2011; 43:405-413.

Kemper KE, Saxton SJ, Bolormaa S, Hayes BJ, Goddard ME. Selection for complex traits leaves little or no classic signatures of selection. BMC Genomics 2014; 15:246.

Kuhn C, Bennewitz J, Reinsch N, Xu N, Thomsen H, Looft C, Brockmann GA, Schwerin M, Weimann C, Hiendleder S, Erhardt G, Medjugorac I, Forster M, Brenig B, Reinhardt F, Reents R, Russ I, Averdunk G, Blumel J, Kalm E. Quantitative trait loci mapping of functional traits in the German Holstein cattle population. J Dairy Sci 2003; 86:360-368.

Kühn C, Thaller G, Winter A, Bininda-Emonds ORP, Kaupe B, Erhardt G, Bennewitz J, Schwerin M, Fries R. Evidence for multiple alleles at the DGAT1 locus better explains a quantitative trait locus with major effect on milk fat content in cattle. Genetics 2004; 167:1873-1881.

Lu D, Miller S, Sargolzaei M, Kelly M, Voort GV, Caldwell T, Wang Z, Plastow G, Moore S. Genome-wide association analyses for growth and feed efficiency traits in beef cattle. J anim Sci 2013; 91:3612-3633.

Lund M, Sorensen P, Madsen P, Jaffrézic F. Detection and modelling of time-dependent QTL in animal populations. Genet Sel Evol 2008; 40:177-194.

McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 2010;26:2069-2070.

Meuwissen T, Goddard M. Accurate prediction of genetic values for complex traits by whole-genome resequencing. Genetics 2010; 185:623-631.

Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001; 157:1819-1829.

Milanesi, E., Negrini, R., Schiavini, F., Nicoloso, L., Mazza, R., Canavesi, F., Miglior, F., Valentini A, Bagnato A, Ajmone-MarsanP. Detection of QTL for milk protein percentage in Italian Friesian cattle by AFLP markers and selective genotyping. J Dairy Res 2008; 75:430-438.

Pérez-Enciso M. Genomic relationships computed from either next-generation sequence or array SNP data. J Anim Breed Genet2014; 131:85-96.

Pérez-Enciso M, Rincón JC, Legarra A. Sequence- vs. chip-assisted genomic selection: accurate biological information is advised. Genet Sel Evol 2015; 47:43.

Pollinger JP, Bustamante CD, Fledel-Alon A, Schmutz S, Gray MM, Wayne RK. Selective sweep mapping of genes with large phenotypic effects. Genome Res 2005; 15:1809-1819.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81:559-575.

Qanbari S, Gianola D, Hayes B, Schenkel F, Miller S, Moore S, Thaller G, Simianer H. Application of site and haplotype-frequency based approaches for detecting selection signatures in cattle. BMC Genomics 2011; 12:318.

Qanbari S, Pausch H, Jansen S, Somel M, Strom TM, Fries R, Nielsen R, Simianer H. Classic Selective Sweeps Revealed by Massive Sequencing in Cattle. PLoS Genet 2014; 10.

R Development Core Team. R: A Language and Environment for Statistical Computing. R Found. Stat. Comput. Vienna Austria 2012.

Ramey HR, Decker JE, McKay SD, Rolf MM, Schnabel RD, Taylor JF. Detection of selective sweeps in cattle using genome-wide SNP data. BMC Genomics 2013; 14:382.

Rolf MM, Taylor JF, Schnabel RD, Mckay SD, Mcclure MC, Northcutt SL, Kerley MS, Weaber RL. Genome-wide association analysis for feed efficiency in Angus cattle. Anim Genet 2011; 43:367-374.

Sabeti PC, Reich DE, Higgins JM, Levine HZP, Richter DJ, SchaffnerSF, Gabriel SB, Platko JV, Patterson NJ, Mcdonald GJ, AckermanHC, Campbell SJ, Altshuler D, Cooper R, Kwiatkowski D, Ward R, Lander ES. Detecting recent positive selection in the human genomefrom haplotype structure. Nature 2002; 419:832-837.

Snelling WM, Chiu R, Schein JE, Hobbs M, Abbey C, Adelson DL, Aerts J, Bennett GL, Bosdet IE, Boussaha M, Brauning R, CaetanoAR, Costa MM, Crawford AM, Dalrymple BP, Eggen A, Everts-vander Wind A, Floriot S, Gautie M, Gill C, Green RD, Holt R, Jann O, Jones SJ, Kappes SM, Keele JW, de Jong PJ, Larkin DM, Lewin H, McEwan JC, McKay S, Marra M, Mathewson C, Matukumalli LK, Moore SS, Murdoch, B, Nicholas FW, Osoegawa K, Roy A, Salih H, Schibler L, Schnabel RD, Silveri L, Skow LC, Smith TP, SonstegardTS, Taylor JF, Tellam R, Van Tassell CP, Williams JL, Womack JE, Wye NH, Yang G, Zhao S. A physical map of the bovine genome. Genome Biol 2007; 8:R165.

Stella A, Ajmone-Marsan P, Lazzari B, Boettcher P. Identification of selection signatures in cattle breeds selected for dairy production. Genetics 2010; 185:1451-1461.

Utsunomiya YT, Pérez O’Brien AM, Sonstegard TS, Van Tassell CP, do Carmo AS, Mészáros G, Sölkner J, Garcia JF. Detecting Loci under Recent Positive Selection in Dairy and Beef Cattle by Combining Different Genome-Wide Scan Methods. PLoS One 2013; 8.

Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human genome. PLoS Biol 2006; 4:e72.

Wang X, Wurmser C, Pausch H, Jung S, Reinhardt F, Tetens J, Thaller G, Fries R. Identification and dissection of four major QTL affecting milk fat content in the German Holstein-Friesian population. PLoS One 2012; 7:e40711.

Winter A, Krämer W, Werner FO, Kollers S, Kata S, Durstewitz G, Buitkamp J, Womack JE, Thaller G, Fries R. Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA: diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. Proc Natl Acad Sci USA 2002; 99:9300-9305.

Downloads

Published

2018-03-21

How to Cite

Rincón, J. C., López, A., & Echeverri, J. (2018). Identifying signatures of recent selection in Holstein cattle in the tropic. Revista Colombiana De Ciencias Pecuarias, 31(1), 45–58. https://doi.org/10.17533/udea.rccp.v31n1a06

Issue

Section

Original research articles

Most read articles by the same author(s)

Similar Articles

> >> 

You may also start an advanced similarity search for this article.