Effects of genetic polymorphism in Pit1, GH, GHR and KCN3 on milk yield and body weight of Khuzestan (Iran) water buffaloes
DOI:
https://doi.org/10.17533/udea.rccp.v32n2a04Keywords:
animal breeding, casein, genetic variation, growth hormone, milk production, SNPAbstract
Background: Genetic information is necessary to devise strategic plans aimed to improve the genetic merit of buffalos. Objective: To assess the effect of genetic polymorphisms in GH, Pit-1, GHR, GHRHR, and KCN3 genes on milk production and body weight of Khuzestan water buffaloes. Methods: Blood samples were collected from 60 buffaloes from the Khuzestan province, Iran. Using the PCR-RFLP technique, the amplified and digested fragments of GH/AluI, GHR/AluI, GHRHR/ HaeIII, Pit1/HinfI, and KCN3/HindIII were genotyped. Results: All animals were monomorphic for GHRHR. The frequency of mutant alleles for GH, GHR, KCN3, and Pit1 was 47.5, 74.2, 49.2, and 51.7%, respectively. There were significant differences (p<0.0001) in the genotypic frequencies of GH, GHR, and Pit1 between high and low milk-yielding buffaloes. The GH (p=0.0002), GHR (p<0.0001) and Pit1 (p<0.0001) polymorphisms also had significant effects on body weight. Sequencing results revealed the presence of C496A, G495A, G498A and C1501T SNPs in the GH, and G1702T in the GHR gene of Khuzestan buffalos. Conclusion: This study highlights the importance of GH, GHR, and Pit1 on milk production and body weight of Khuzestan buffaloes. The results suggest that devising an integrated breeding plan in Khuzestan water buffalos can considerably benefit from the very high diversity in candidate genes.
Downloads
References
Accorsi P, Pacioni B, Pezzi C, Forni M, Flint D, Seren E. Role of prolactin, growth hormone and insulin-like growth factor 1 in mammary gland involution in the dairy cow. J Dairy Sci 2002; 85(3):507-13.
Andreas E, Sumantri C, Nuraini H, Farajallah A, Anggraeni A. Identification of GH| AluI and GHR| AluI genes polymorphisms in Indonesian Buffalo. J Indonesian Trop Anim Agric 2010;35(4):215-21.
Balogh O, Kovács K, Kulcsár M, Gáspárdy A, Fébel H, Zsolnai A, Fésüs L, Delavaud C, Chilliard Y, Gilbert R. Interrelationship of growth hormone AluI polymorphism and hyperketonemia with plasma hormones and metabolites in the beginning of lactation in dairy cows. Livest Sci 2009; 123(2):180-6.
Bauman D, St-Pierre N, Milliken G, Collier R, Hogan J, Shearer J, Smith K, Thatcher W, Eastridge M. An updatedmeta-analysis of bovine somatotropin: effects on healthand welfare of dairy cows. 24th Tri-State Dairy Nutrition Conference, Fort Wayne, Indiana, USA, 20-22 April, 2015:The Ohio State University.
Berry D, Friggens N, Lucy M, Roche J. Milk production and fertility in cattle. Annu rev anim biosci 2016; 4:269-90.Bines J, Hart I. Metabolic limits to milk production, especially roles of growth hormone and insulin. J Dairy Sci 1982;65(8):1375-89.
Borghese A, Mazzi M. Buffalo population and strategies in the world. Buffalo production and research 2005; 67:1-39.
Borghese A. Development and perspective of buffalo and buffalo market in Europe and Near East, Proceedings of the 9th World Buffalo Congress; 2010 25-28 April, Buenos Aires, Argentina.
Capuco AV, Akers RM. Management and environmental influences on mammary gland development and milk production. Managing the prenatal environment to enhance livestock productivity: Springer; 2009. p. 259-92.
Cinar MU, Akyuz B, Arslan K, Ilgar EG. Genotyping of the kappa‐casein and beta‐lactoglobulin genes in Anatolian water buffalo by PCR‐RFLP. Int J Dairy Technol 2015; 69:308-311.
Cohen LE, Wondisford FE, Radovick S. Role of Pit-1 in the gene expression of growth hormone, prolactin, and thyrotropin. Endocrinol Metab Clin North Am 1996; 25(3):523-40.
Dezfuli BT, Javaremi AN, Abbasi M, Fayazi J, Chamani M. Economic weights of milk production traits for buffalo herds in the southwest of Iran using profit equation. World Applied Sciences Journal 2011; 15(11):1604-13.
Dunshea F, D’Souza D, Channon H. Metabolic modifiers as performance-enhancing technologies for livestock production. Animal Frontiers 2016; 6(4):6-14.
Eghbalsaied S, Akasheh L, Honarvar M, Forouzandeh AD, Ghazikhani-Shad A, Bankizadeh F, Abdullahpour R. Fine-tuning of season definition for genetic analysis of fertility, productivity, and longevity traits in Iranian Holstein dairy cows. Kuwait J Sci Eng 2016; 43(1).
Erwin CR, Croyle ML, Donelson JE, Maurer RA. Nucleotide sequence of cloned complementary deoxyribonucleic acid the alpha subunit of bovine pituitary glycoprotein hormones. Biochemistry-US 1983; 22(20):4856-60.
Fries R, Eggen A, Womack JE. The bovine genome map. Mamm Genome 1993; 4(8):405-28.
Godfrey P, Rahal JO, Beamer WG, Copeland NG, Jenkins NA, Mayo KE. GHRH receptor of little mice contains a missensemutation in the extracellular domain that disrupts receptorfunction. Nat Genet 1993;4(3):227-32.
Hadi Z, Atashi H, Dadpasand M, Derakhshandeh A, Seno MG. The relationship between growth hormone polymorphism and growth hormone receptor genes with milk yield and reproductiveperformance in Holstein dairy cows. Iran J Vet Res 2015;16(3):244.
Hart IC, Bines JA, Morant S, Ridley J. Endocrine control of energy metabolism in the cow: comparison of the levels of hormones (prolactin, growth hormone, insulin and thyroxine) and metabolites in the plasma of high-and low-yielding cattle at various stages of lactation. J Endocrinol 1978; 77(3):333-45.
Heydarian D, Miraei-Ashtiani SR, Sadeghi M. Study on DGAT1-exon8 Polymorphism in Iranian Buffalo. International Journal of Advanced Biological and Biomedical Research 2014; 2(7):2276-82.
Høj S, Fredholm M, Larsen N, Nielsen VH. Growth hormone gene polymorphism associated with selection for milk fat production in lines of cattle. Anim Genet 1993; 24(2):91-6.
Hussain D. Molecular Characterization of Some Productivity Triats in Mesopotamian Buffaloes (Bubalus bubalis). Eur J Mol Biotechnol 2015; 8(2):80-7.
Jakaria J, Noor RR. Identification of a Single Nucleotide Polymorphism at Hinf-1 Enzyme Restriction Site of Pit-1 Gene on Indonesian Bali Cattle Population. Trop Anim Sci J 2015;38(2):104-9.
Javanmard A, Asadzadeh N, Banabazi MH, Tavakolian J. The allele and genotype frequencies of bovine pituitary specific transcription factor and leptin genes in Iranian cattle and buffalo populations using PCR-RFLP. Iran J Biotechnol 2005; 3:104-8.
Jiang H, Lucy MC. Variants of the 5′-untranslated region of the bovine growth hormone receptor mRNA: isolation, expression and effects on translational efficiency. Gene 2001; 265(1):45-53.
Kalashnikova L, Khabibrakhmanova YA, Tinaev AS. Effect of polymorphism of milk protein and hormone genes on milk productivity of black pied cows. Russ Agric Sci 2009; 35(3):192-5.
Kamalzadeh A, Rajabbaigy M, Kiasat A. Livestock production systems and trends in livestock industry in Iran. J Agri Soc Sci 2008; 4:183-88.
Komisarek J, Dorynek Z. Effect ofABCG2, PPARGC1A, OLR1 and SCD1 gene polymorphism on estimated breeding values for functional and production traits in Polish Holstein-Friesian bulls. J appl genet 2009; 50(2):125-32.
Lien S, Rogne S. Bovine casein haplotypes: number, frequencies and applicability as genetic markers. Anim Genet 1993; 24(5):373-6.
Machlin L. Effect of growth hormone on milk production and feed utilization in dairy cows. J Dairy Sci 1973; 56(5):575-80.
Maga EA, Cullor JS, Smith W, Anderson GB, Murray JD. Human lysozyme expressed in the mammary gland of transgenic dairy goats can inhibit the growth of bacteria that cause mastitis and the cold-spoilage of milk. Foodborne Pathog Dis 2006; 3(4):384-92.
Mitra A, Schlee P, Krause I, Blusch J, Werner T, Balakrishnan C, Pirchner F. Kappa‐casein polymorphisms in Indian dairy cattle and buffalo: A new genetic variant in buffalo. Anim Biotechnol 1998; 9(2):81-7.
Moody D, Pomp D, Barendse W. Rapid communication: restriction fragment length polymorphism in amplification products of the bovine growth hormone-releasing hormone gene. J Anim Sci 1995; 73(12):3789.
Naserian AA, Saremi B. Water buffalo industry in Iran. Ital J Anim Sci. 2007; 6(sup2):1404-5.
Nasr M, Awad A, El Araby I. Associations of Leptin and Pituitary‐Specific Transcription Factor Genes’ Polymorphisms with Reproduction and Production Traits in Dairy Buffalo. Reprod Domest Anim 2016; 51(4):597-603.
Othman OE, Zayed FA, El Gawead AA, El-Rahman MR. Genetic polymorphism of three genes associated with milk trait in Egyptian buffalo. J Genet Eng Biotechnol 2011; 9(2):97-102.
Parikh RC, Rank DN. Characterization and association of the Pit-1 gene in the Indian buffalo. Indian J Anim Sci 2013; 83(12).
Pasandideh M, Mohammadabadi M, Esmailizadeh A, Tarang A. Association of bovine PPARGC1A and OPN genes with milk production and composition in Holstein cattle. Czech J Anim Sci 2015; 60(3):97-104.
Ranjbar M, Brujeni G, Mashhadi A, Dabbaghyan M. Study of BuLA-DRB3 polymorphism in Khuzestan river buffaloes. J Vet Res 2016; 71(1):Pe33-Pe40.
Riaz MN, Zahur AB, Abbas N, Yousaf M, Shah A, Ishaq R, Suleman M. Κ‐CN gene polymorphism in Nili‐ravi buffalo, Achai and Sahiwal cattle of Pakistan. Int J Dairy Technol.2015;68(1):105-10.
Shakerian M, Kiani H, Ehsani M-R. Effect of buffalo milk on the yield and composition of buffalo feta cheese at various processing parameters. Food Biosci 2016;15:110-7.
Shi DS, Wang J, Yang Y, Lu FH, Li XP, Liu QY. DGAT1, GH, GHR, PRL and PRLR polymorphism in water buffalo (Bubalus bubalis). Reprod domest anim 2012; 47(2):328-34.
Shokrollahi B, Amirinia C, Djadid ND, Amirmozaffari N, Kamali MA. Development of polymorphic microsatellite loci for Iranian river buffalo (Bubalus bubalis). Afr J Biotechnol 2009; 8(24).
Smitz N, Van Hooft P, Heller R, Cornélis D, Chardonnet P, Kraus R, Greyling B, Crooijmans R, Groenen M, Michaux J. Genome-wide single nucleotide polymorphism (SNP) identification and characterization in a non-model organism, the African buffalo (Syncerus caffer), using next generation sequencing. Mamm Biol 2016; 81(6):595-603.
Taghizadeh K, Nasiri MB, Fayazi J, Bujarpoor M. Investigation of (Stearoyl-CoA Desaturase 1) SCD1 Gene Polymorphism in Khuzestan Buffalo Population Using PCR-RFLP Method. IranianJournal of Applied Animal Science 2014; 4(2):425-8.
Viitala S, Szyda J, Blott S, Schulman N, Lidauer M, Mäki-Tanila A, Georges M, Vilkki J. The role of the bovine growth hormone receptor and prolactin receptor genes in milk, fat and protein production in Finnish Ayrshire dairy cattle. Genetics 2006; 173(4):2151-64.
Watanabe M, Naito M, Sasaki E, Sakurai M, Kuwana T, Oishi T. Liposome‐mediated DNA transfer into chicken primordial germ cells in vivo. Mol Reprod Dev 1994; 38(3):268-74.
Woollard J, Schmitz C, Freeman A, Tuggle C. Rapid communication: HinfI polymorphism at the bovine Pit-1 locus. J Anim Sci 1994; 72:3267.
Yao J, Aggrey SE, Zadworny D, Hayes JF, Kühnlein U. Sequence variations in the bovine growth hormone gene characterized by single-strand conformation polymorphism (SSCP) analysis and their association with milk production traits in Holsteins. Genetics 1996; 144(4):1809-16.
Yeh F, Yang R, Boyle T. POPGENE: A Microsoft Windows based freeware for population genetic analysis. Version 1.31, University of Alberta. Center for International Forestry Research, Alberta, Canada. 1999.
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Colombiana de Ciencias Pecuarias
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors enable RCCP to reprint the material published in it.
The journal allows the author(s) to hold the copyright without restrictions, and will allow the author(s) to retain publishing rights without restrictions.