Evaluation of the Romosinuano cattle population structure in Mexico using pedigree analysis

Authors

DOI:

https://doi.org/10.17533/udea.rccp.v32n4a05

Keywords:

effective population size, gene flow, genetic diversity, genetic drift, generation interval, inbreeding, pedigree, population structure, probability of gene origin, Romosinuano cattle

Abstract

Background: Romosinuano cattle breed in Mexico has endured isolation and it is necessary to characterize it in order to facilitate sustainable genetic management. Objective: To assess the evolution of the structure and genetic diversity of the Romosinuano breed in Mexico, through pedigree analysis. Methods: Pedigree data was obtained from Asociación Mexicana de Criadores de Ganado Romosinuano y Lechero Tropical (AMCROLET). The ENDOG program (4.8 version) was used to analyze two datasets, one that includes upgrading from F1 animals (UP) and the other with only straight-bred cattle (SP). For both datasets, three reference populations were defined: 1998-2003 (RP1), 2004-2009 (RP2), and 2010-2017 (RP3). The pedigree included 3,432 animals in UP and 1,518 in SP. Demographic parameters were: Generation interval (GI), equivalent number of generations (EG), pedigree completeness index (PCI), and gene flow among herds. Genetic parameters were: Inbreeding (F) and average relatedness (AR) coefficients, effective population size (Nec), effective number of founders and ancestors, and number of founder genome equivalents. Results: The GI varied from 6.10 to 6.54 for UP, and from 6.47 to 7.16 yr for SP. The EG of the UP and SP improved >63% from RP1 to RP3. The PCI increased over time. No nucleus or isolated herds were found. For RP3, F and AR reached 2.08 and 5.12% in the UP, and 2.55 and 5.94% in the SP. For RP3, Nec was 57 in the UP and 45 in the SP. Genetic diversity losses were attributed mainly (>66%) to genetic drift, except for RP3 in the SP (44%). Conclusions: A reduction of the genetic diversity has been occurring after the Romosinuano breed association was established in Mexico, and this is mainly due to random loss of genes.

|Abstract
= 535 veces | PDF
= 464 veces|

Downloads

Download data is not yet available.

Author Biographies

Rafael Núñez-Domínguez, Chapingo Autonomous University

Department of Zootechnics, Chapingo Autonomous University, Chapingo, México.

Ricardo E. Martínez-Rocha, Chapingo Autonomous University

Department of Zootechnics, Chapingo Autonomous University, Chapingo, México.

Jorge A. Hidalgo-Moreno, Chapingo Autonomous University

Department of Zootechnics, Chapingo Autonomous University, Chapingo, México.

Rodolfo Ramírez-Valverde, Chapingo Autonomous University

Department of Zootechnics, Chapingo Autonomous University, Chapingo, México.

José G. García-Muñiz, Chapingo Autonomous University

Department of Zootechnics, Chapingo Autonomous University, Chapingo, México.

References

AMCROLET. Resumen de la evaluación genética para sementales Romosinuano 2016. Chapingo, México. Asociación Mexicana de Criadores de Ganado Romosinuano y Lechero Tropical, AC; 2017.

Ballou JD, Lacy RC. Identifying genetically important individuals for management of genetic diversity in pedigreed populations. In: Ballou JD, Gilpin M, Foose TJ, editors. Population Management for Survival & Recovery. Analytical Methods and Strategies in Small Population Conservation. New York: Columbia University Press; 1995. p.76-111.

Battagin M, Penasa M, Pretto D, Cassandro M. Pedigree analysis of Burlina cattle population. Acta Agrar Kaposv 2010; 14:161-5.

Bernardes PA, Grossi DA, Savegnago RP, Buzanskas ME, Ramos SB, Romanzini EP, Guidolin DGF, Bezerra LAF, Lôbo RB, Munari DP. Population structure of Tabapuã beef cattle using pedigree analysis. Livest Sci 2016; 187:96-101. https://doi.org/10.1016/j.livsci.2016.03.002

Boichard D, Maignel L, Verrier E. The value of using probabilities of gene origin to measure genetic variability in a population. Genet Sel Evol 1997; 29:5-23. https://doi.org/10.1186/1297-9686-29-1-5

Burrow HM. The effects of inbreeding in beef cattle. Anim Breed Abstr 1993; 61:737-51. Caballero A, Toro M. Interrelations between effective population size and other pedigree tools for the management of conserved populations. Genet Res 2000; 75:331-43. https://doi.org/10.1017/S0016672399004449

Carolino N, Gama LT. Indicators of genetic erosion in an endangered population: The Alentejana cattle breed in Portugal. J Anim Sci 2007; 86:47-56. https://doi.org/10.2527/jas.2007-0148

Carroll JA, Burdick NC, Reutera RR, Chase CCJr, Spiers DE, Arthington JD, Coleman SW. Differential acute phase immune responses by Angus and Romosinuano steers following an endotoxin challenge. Domest Anim Endocrin 2011; 41:163-73. https://doi.org/10.1016/j.domaniend.2011.06.002

Carroll JA, Burdick NC, Chase CCJr, Coleman SW, Spiers DE. Influence of environmental temperature on the physiological, endocrine, and immune responses in livestock exposed to a provocative immune challenge. Domest Anim Endocrin 2012; 43:146-53. https://doi.org/10.1016/j.domaniend.2011.12.008

Cervantes I, Goyache F, Molina A, Valera M, Gutiérrez JP. Estimation of effective population size from the rate of coancestry in pedigreed populations. J Anim Breed Genet 2011; 128:56-63. https://doi.org/10.1111/j.1439-0388.2010.00881.x

De Alba J. El Libro de los Bovinos Criollos de América. Biblioteca Básica de Agricultura. Montecillo (Estado de México): Ed. Colegio de Postgraduados. 2011.

FAO (Food and Agriculture Organization for the United Nations). Secondary guidelines for development of national farm animal genetic resources management plans: Management of small populations at risk. Rome, Italy; 1998.

Gutiérrez JP, Altarriba J, Díaz C, Quintanilla R, Cañón J, Piedrafita J. Pedigree analysis of eight Spanish beef cattle breeds. Genet Sel Evol 2003; 35:43-63. https://doi.org/10.1186/1297-9686-35-1-43

Gutiérrez JP, Goyache F. A note on Endog: a computer program for analysing pedigree information. J Anim Breed Genet 2005; 122:172-76. https://doi.org/10.1111/j.1439-0388.2005.00512.x

Gutiérrez JP, Cervantes I, Goyache F. Improving the estimation of realized effective population sizes in farm animals. J Anim Breed Genet 2009; 126:327-32. https://doi.org/10.1111/j.1439-0388.2009.00810.x

Hammerly SC, Morrow ME, Johnson JA. A comparison of pedigree- and DNA-based measures for identifying inbreeding depression in the critically endangered Attwater’s Prairie-chicken. Mol Ecol 2013; 22:5313-28. https://doi.org/10.1111/mec.12482

Honda T, Fujii T, Nomura T, Mukai F. Evaluation of genetic diversity in Japanese Brown cattle population by pedigree analysis. J Anim Breed Genet 2006; 123:172-9. https://doi.org/10.1111/j.1439-0388.2006.00586.x

Jamieson IG, Allendorf FW. How does the 50/500 rule apply to MVPs?. Trends Ecol Evol 2012; 27:578-84. https://doi.org/10.1016/j.tree.2012.07.001

Lacy RC. Analysis of founder representation in pedigrees: founder equivalents and founder genome equivalents. Zoo Biol 1989; 8:111-23. https://doi.org/10.1002/zoo.1430080203

Lacy RC. Clarification of genetic terms and their use in the management of captive populations. Zoo Biol 1995; 14:565-78. https://doi.org/10.1002/zoo.1430140609

MacCluer JW, Boyce AJ, Dyke B, Weitkamp LR, Pfenning DW, Parsons CJ. Inbreeding and pedigree structure in Standardbred horses. J Hered 1983; 74:394-9. https://doi.org/10.1093/oxfordjournals.jhered.a109824

Maignel L, Boichard D, Verrier E. Genetic variability of French dairy breeds estimated from pedigree information. Interbull Bull 1996; 14:49-54.

Martínez RA, García D, Gallego JL, Onofre G, Pérez J, Cañón J. Genetic variability in Colombian Creole cattle populations estimated by pedigree information. J Anim Sci 2008; 86:545–52. https://doi.org/10.2527/jas.2007-0175

Meuwissen THE, Luo Z. Computing inbreeding coefficients in large populations. Genet Sel Evol 1992; 24:305-13. doi:10.1186/1297-9686-24-4-305

Onogi A, Shirai K, Amano T. Investigation of genetic diversity and inbreeding in a Japanese native horse breed for suggestions on its conservation. Anim Sci J 2017; 88:1902-10. https://doi.org/10.1111/asj.12867

Pezzini T, Mariante AS, Martins E, Paiva S, Seixas L, Costas Jr JBG, Rolo J, McManus C. Population structure of Brazilian Crioula Lageana cattle (Bos taurus) breed. Rev Colomb Cienc Pecu 2018; 31:93-102.

Pinheiro M, Kjöllerström HJ, Oom MM. Genetic diversity and demographic structure of the endangered Sorraia horse breed assessed through pedigree analysis. Livest Sci 2013; 152:1-10. https://doi.org/10.1016/j.livsci.2012.11.017

Riley DG, Chase CCJr, Coleman SW, Olson TA. Evaluation of birth and weaning traits of Romosinuano calves as purebreds and crosses with Brahman and Angus. J Anim Sci 2007; 85:289-98. https://doi.org/10.2527/jas.2006-416

Riley DG, Burke JM, Chase CCJr, Coleman SW. Heterosis and direct effects for Charolais-sired calf weight and growth, cow weight and weight change, and rations of cow and calf weights and weight changes across warm season lactation in Romosinuano, Angus, and F1 cows in Arkansas. J Anim Sci 2016; 94:1-12. https://doi.org/10.2527/jas.2015-9484

Rosendo PA, Palacios JAL, Rosales MF, Torres HG, Ramírez VR, Becerril PCM. Genetic variability of Tropical Milking Criollo cattle of Mexico estimated from genealogical information. Rev Colomb Cienc Pecu 2018; 31:196-203. http://dx.doi.org/10.17533/udea.rccp.v31n3a04

Santana MLJr, Oliveira PS, Eler JP, Gutiérrez JP, Ferraz JBS. Pedigree analysis and inbreeding depression on growth traits in Brazilian Marchigiana and Bonsmara breeds. J Anim Sci 2012; 90:99-108. https://doi.org/10.2527/jas.2011-4079

Santana MLJr, Pereira RJ, Bignardi AB, El Faro L, Tonhati H, Albuquerque LG. History, structure, and genetic diversity of Brazilian Gir cattle. Livest Sci 2014; 163:26-33. https://doi.org/10.1016/j.livsci.2014.02.007

Santana MLJr, Pereira RJ, Bignardi AB, Ayres DR, Menezes GRO, Silva LOC, Leroy G, Machado CHC, Josahkian LA, Albuquerque LG. Structure and genetic diversity of Brazilian Zebu cattle breeds assessed by pedigree analysis. Livest Sci 2016; 187:6-15. https://doi.org/10.1016/j.livsci.2016.02.002

Scharf B, Carroll JA, Riley DG, Chase CCJr, Coleman SW, Keisler DH, Weaber RL, Spiers DE. Evaluation of physiological and blood serum differences in heat-tolerant (Romosinuano) and heat suceptible (Angus) Bos taurus cattle during controlled heat challenge. J Anim Sci 2010; 88:2321-36. https://doi.org/10.2527/jas.2009-2551

SAGARPA (Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación). Comunicado de Prensa BCS/226/2017. 2017; access date: 27/07/2017 http://sagarpa.gob.mx/Delegaciones/bajacaliforniasur/boletines/2017/junio/Documents/2017BS226.PDF

Sheikhlou M, Abbasi MA. Genetic diversity of Iranian Lori-Bakhtiari sheep assessed by pedigree analysis. Small Ruminant Res 2016; 141:99-105. https://doi.org/10.1016/j.smallrumres.2016.07.009

Silva MHMA da, Malhado CHM, Costa JLJr, Cobuci JA, Costa CN, Carneiro PLS. Population genetic structure in the Holstein breed in Brazil. Trop Anim Health Prod 2016; 48:331-6. DOI: 10.1007/s11250-015-0956-7

Toro MA, Villanueva B, Fernández J. Genomics applied to management strategies in conservation programmes. Livest Sci 2014; 166:48-53. https://doi.org/10.1016/j.livsci.2014.04.020

Vassallo JM, Diaz C, Garcia-Medina JR. A note on the population structure of the Avileña breed of cattle in Spain. Livest Prod Sci 1986; 15:285-8. https://doi.org/10.1016/0301-6226(86)90035-7

Downloads

Published

2020-01-31

How to Cite

Núñez-Domínguez, R., Martínez-Rocha, R. E., Hidalgo-Moreno, J. A., Ramírez-Valverde, R., & García-Muñiz, J. G. (2020). Evaluation of the Romosinuano cattle population structure in Mexico using pedigree analysis. Revista Colombiana De Ciencias Pecuarias, 33(1), 44–59. https://doi.org/10.17533/udea.rccp.v32n4a05

Issue

Section

Original research articles

Most read articles by the same author(s)

Similar Articles

> >> 

You may also start an advanced similarity search for this article.