Effect of carbohydrate source on productive performance, ruminal and systemic health of grazing cows

  • Luis M. Gómez-Osorio SOLLA S.A., University of Antioquia
  • Sandra L. Posada-Ochoa University of Antioquia
  • Ricardo Rosero-Noguera University of Antioquia
  • Martha E. Olivera-Angel University of Antioquia
Keywords: cassava, cereal grains, citrus pulp, dairy cattle, energy source, feed efficiency, lameness, non-fibrous carbohydrates, ruminal acidosis, starch


Background: The nutritional limitations of Cenchrus clandestinus –i.e., high protein and low energy concentrations- make it necessary to supplement cows with non-fibrous carbohydrate (NFC) sources to improve productive performance. Nevertheless, such supplementation can lead to ruminal acidosis. Objective: To evaluate partial replacement of corn grain (Zea mays, ZM) with sorghum grain (Sorghum vulgare, SV), cassava root (Manihot esculenta, MES) or citrus pulp (Citrus sp., C) on milk yield and quality, ruminal pH and health of grazing cows. Methods: Eight Holstein cows were evaluated in a 4 x 4 Latin square design during the first 60 days of lactation. Treatments (isoenergetic rations, 1.45 ± 0.003 Mcal NEL/kg DM) consisted of a mixture of grass and four concentrates with different NFC sources. Results: No differences in dry matter intake, feed efficiency, ruminal pH, hematological and metabolic profile were observed between treatments. Rumen pH was higher than 6.0, confirming the absence of ruminal acidosis. Milk yield (energy-corrected), protein, and total solids were higher for MES vs. C. Conclusions: None of the NFC sources tested compromised the ruminal or systemic health of the cows, while MES improved milk yield and quality.

= 387 veces | PDF
= 359 veces|


Download data is not yet available.

Author Biographies

Luis M. Gómez-Osorio, SOLLA S.A., University of Antioquia

Nutri-Solla Research and Development Group, SOLLA S.A., Medellín, Colombia. Research Group in Agrarian Sciences (GRICA), Faculty of Agrarian Sciences, University of Antioquia, Medellín, Colombia. Biogenesis Research Group, Faculty of Agrarian Sciences, University of Antioquia, Medellín, Colombia.

Sandra L. Posada-Ochoa, University of Antioquia

Research Group in Agrarian Sciences (GRICA), Faculty of Agrarian Sciences, University of Antioquia, Medellín, Colombia.

Ricardo Rosero-Noguera, University of Antioquia

Research Group in Agrarian Sciences (GRICA), Faculty of Agrarian Sciences, University of Antioquia, Medellín, Colombia.

Martha E. Olivera-Angel, University of Antioquia

Biogenesis Research Group, Faculty of Agrarian Sciences, University of Antioquia, Medellín, Colombia.


Adetunji AI, Khoza S, de Kock HL, Taylor RN. Influence of sorghum grain type on wort physico-chemical and sensory quality in a whole-grain and commercial enzyme mashing process. J Inst Brew 2013; 119:156-163. DOI: https://doi.org/10.1002/jib.76

AOAC International. Official Methods of Analysis. 17th ed. Gaithersburg, MD: AOAC International; 2000.

AOAC International. Official Methods of Analysis. 18th ed. Gaithersburg, MD: AOAC International; 2005.

International. Official Methods of Analysis. 18th ed. Arlington, VA: AOAC International; 2007.

Bampidis VA, Robinson PH. Citrus by-products as ruminant feeds: A review. Anim Feed Sci Technol 2006; 128:175-217. DOI: https://doi.org/10.1016/j.anifeedsci.2005.12.002

Bates RG, Pinching GD. Acidic dissociation constant of ammonium ion at 0o to 50o C, and the base strength of ammonia. J Res Natl Bur Stand 1949; 42:419-430.

Boerman JP, Potts SB, VandeHaar MJ, Lock AL. Effects of partly replacing dietary starch with fiber and fat on milk production and energy partitioning. J Dairy Sci 2015; 98:7264-7276. DOI: https://doi.org/10.3168/jds.2015-9467

Botezatu A, Vlagioiu C, Codreanu M, Oraşanu A. Biochemical and hematological profile in cattle effective. Bulletin UASVM Veterinary Medicine 2014; 71:27-30. DOI: http://dx.doi.org/10.15835/buasvmcn-vm:71:1:9544

Casper DP, Mertens DR. Feed efficiency of lactating dairy cows is related to dietary energy density. J Dairy Sci 2007; 90 (Suppl 1):407 (Abstr).

Čejna V, Chládek G. The importance of monitoring changes in milk fat to milk protein ratio in holstein cows during lactation. J Cent Eur Agric 2005; 6:539-546. DOI: https://www.researchgate.net/publication/27201776

Coroian CO, Mireşan V, Coroian A, Răducu A, Andronie L, Marchiş Z, Terheş S, Muntean MV. Biochemical and haematological blood parameters at different stages of lactation in cows. Bulletin UASVM Animal Science and Biotechnologies 2017; 74:31-36. DOI: http://dx.doi.org/10.15835/buasvmcn-asb:12283

Correa HJ, Pabón ML, Carulla JE. Valor nutricional del pasto kikuyo (Pennisetum clandestinum Hoechst Ex Chiov.) para la producción de leche en Colombia (Una revisión): I-Composición química y digestibilidad ruminal y posruminal. Livest Res Rural Dev 2008; [access date: March 25, 2019] URL: http://www.lrrd.org/lrrd20/4/corra20059.htm

Correa HJ, Pabón ML, Carulla JE. Estimación del consumo de materia seca en vacas Holstein bajo pastoreo en el trópico alto de Antioquia. Livest Res Rural Dev 2009; [access date: March 30, 2019] URL: http://www.lrrd.org/lrrd21/4/corr21059.htm

Danscher AM, Shucong L, Andersen PH, Khafipour E, Kristensen NB, Plaizier JC. Indicators of induced subacute ruminal acidosis (SARA) in Danish Holstein cows. Acta Vet Scand 2015; 57:39-52. DOI: https://doi:10.1186/s13028-015-0128-9

Dykes L. Tannin analysis in sorghum grains: Methods and Protocols. In: Zhao ZY, Dahlberg J, editors. Sorghum Methods and Protocols. Basilea: Humana Press; 2019. p.109-120. DOI: https://doi.org/10.1007/978-1-4939-9039-9

Gao X, Oba M. Characteristics of dairy cows with a greater or lower risk of subacute ruminal acidosis: Volatile fatty acid absorption, rumen digestion, and expression of genes in rumen epithelial cells. J Dairy Sci 2016; 99:8733-8745. DOI: https://doi.org/10.3168/jds.2016-11570

Gómez LM, Posada SL, Olivera M. Starch in ruminant diets. Rev Colomb Cienc Pecu 2016; 29:77-90. DOI: https://doi:10.17533/udea.rccp.v29n2a01

Hansen KM, Truesen AB, Søderberg JR. Enzyme assay for identification of pectin and pectin derivatives, based on recombinant pectate lyase. J AOAC Int 2001; 84:1851-1854.

Hulsen J, Aerden D, Rodenburg J. Feeding signals. 2014. The Netherlands: J Agricultural Publishers; 2014.

Huntington GB, Harmon DL, Richards CJ. Sites, rates, and limits of starch digestion and glucose metabolism in growing cattle. J Anim Sci 2006; 84 Suppl: E14-24.

Hutjens MF. Dairy efficiency and dry matter intake. Proceedings of the 7th Western Dairy Management Conference; 2005; Reno, NV.

International Standards Organization-ISO. Animal feeding stuffs, animal products, and faeces or urine. Determination of gross calorific value-Bomb calorimeter method. Geneva, Switzerland; 1998.

Jing L, Dewanckele L, Vlaeminck B, Van Straalen WM, Koopmans A, Fievez V. Susceptibility of dairy cows to subacute ruminal acidosis is reflected in milk fatty acid proportions, with C18:1 trans-10 as primary and C15:0 and C18:1 trans-11 as secondary indicators. J Dairy Sci 2018; 101:9827-9840. DOI: https://doi.org/10.3168/jds.2018-14903

Khalili H, Sairanen A. Effect of concentrate type on rumen fermentation and milk production of cows at pasture. Anim Feed Sci Technol 2000; 84:199-212. DOI:https://doi.org/10.1016/S0377-8401(00)00130-9

Kleen JL, Hooijer GA, Rehage J, Noordhuizen JP. Noordhuizen. Subacute ruminal acidosis (SARA): a review. J Vet Med A Physiol Pathol Clin Med 2003; 50:406-414. DOI:https://doi.org/10.1046/j.1439-0442.2003.00569.x

Krause KM, Oetzel GR. Understanding and preventing subacute ruminal acidosis in dairy herds: a review. Anim Feed Sci Technol 2006; 126:215-236. DOI: https://doi.org/10.1016/j.anifeedsci.2005.08.004

Leng RA. The potential of feeding nitrate to reduce enteric methane production in ruminants. A report to the department of climate change. Commonwealth Government of Australia. Canberra 2008; [access date: April 24, 2019] URL: http://www.penambulbooks.com

Li S, Khafipour E, Krause DO, Kroeker A, Rodríguez-Lecompte JC, Gozho GN, Plaizier JC. Effects of subacute ruminal acidosis challenges on fermentation and endotoxins in the rumen and hindgut of dairy cows. J Dairy Sci 2012; 95:294-303. DOI: https://doi.org/10.3168/jds.2011-4447

Marais JP. Factors affecting the nutritive value of kikuyu grass (Pennisetum clandestinum) -a review. Tropical Grasslands 2001; 35(2): 65-84.

Mertens DR. Creating a system for meeting the fiber requirements of dairy cows. J Dairy Sci 1997; 80:1463-1481. DOI: https://doi.org/10.3168/jds.S0022-0302(97)76075-2

Mertens DR. Maximizing forage use by dairy cows. WCDS Adv Dairy Technol 2009; 21:303-319

Mottram T, Lowe J, McGowan M, Phillips N. Technical note: A wireless telemetric method of monitoring clinical acidosis in dairy cows. Comput Electron Agric 2008; 64:45-48. DOI: https://doi.org/10.1016/j.compag.2008.05.015

NRC. Nutrient Requirements of Dairy Cattle. 7th ed. Washington, DC: Natl Acad Sci; 2001.

NRC. Nutrient Requirements of Dairy Cattle. 6th ed. Washington, DC: Natl Acad Sci; 1988.

Offner A, Bach A, Sauvant D. Quantitative review of in situ starch degradation in the rumen. Anim Feed Sci Technol 2003; 106:81-93. DOI: https://doi.org/10.1016/S0377-8401(03)00038-5

Ørskov ER. Starch digestion and utilization in ruminants. J Anim Sci 1986; 63:1624-1633.DOI: https://doi.org/10.2527/jas1986.6351624x

Radkowska I, Herbut E. Hematological and biochemical blood parameters in dairy cows depending on the management system. Anim Sci Pap Rep 2014; 32:317-325.

Santana A, Meireles A. New starches are the trend for industry applications: A review. Food Public Health 2014; 4:229-241. DOI: https://doi:10.5923/j.fph.20140405.04

Santos-Silva J, Dentinho MT, Francisco A, Portugal AP, Belo AT, Martins APL, Alves SP, Bessa RJB. Replacing cereals with dehydrated citrus pulp in a soybean oil supplemented diet increases vaccenic and rumenic acids in ewe milk. J Dairy Sci 2016; 99:1173-1182. DOI: https://doi.org/10.3168/jds.2015-9966

SAS Institute Inc. SAS/STAT® 14.1 User’s Guide. Cary, NC, USA: SAS Institute Inc., 2015.

Sharma N, Singh NK, Bhadwal MS. Relationship of somatic cell count and mastitis: an overview. Asian-Australas J Anim Sci 2011; 24:429-438. DOI: https://doi.org/10.5713/ajas.2011.10233

Spörndly R, Grönqvist T, Knicky M, Ericson B. A note on sample preparation in the analysis of nitrate and nitrite in forage. Proceedings of the 7th Nordic Feed Science Conference; 2016 Sep 16; Uppsala, Sweden: Swedish University of Agricultural Sciences; 2016.

Sprecher DJ, Hosteler DE, Kaneene JB. A lameness scoring system that uses posture and gait to predict dairy cattle reproductive performance. Theriogenol 1997; 47:1179-1187. DOI: https://doi.org/10.1016/S0093-691X(97)00098-8

Tabasum S, Younas M, Ansab Zaeem M, Majeed I, Majeed M, Noreen A, Naeem Iqbal M, Mahmood Zia K. A review on blending of corn starch with natural and synthetic polymers, and inorganic nanoparticles with mathematical modeling. Int J Biol Macromol 2018; 122:969-996. DOI: https://doi.org/10.1016/j.ijbiomac.2018.10.092

Theurer CB, Huber JT, Delgado-Elorduy A, Wanderley R. Invited review: summary of steam-flaking corn or sorghum grain for lactating dairy cows. J Dairy Sci 1999; 82:1950-1959. DOI: https://doi.org/10.3168/jds.S0022-0302(99)75431-7

Van Soest PJ, Wine RH. Determination of lignin and cellulose in acid-detergent fiber with permanganate. J AOAC Int 1968; 51:780-785.

Yun SH, Matheson NK. Estimation of amylose content of starches after precipitation of amylopectin by concavalin-A. Starch/Stärke 1990; 42:302 - 305. DOI: https://doi.org/10.1002/star.19900420805

Zamudio-Sánchez FJ, Alvarado-Segura AA. Análisis de diseños experimentales con igual número de submuestras. México: Universidad Autónoma Chapingo; 1996.

How to Cite
Gómez-Osorio L. M., Posada-Ochoa S. L., Rosero-Noguera R., & Olivera-Angel M. E. (2020). Effect of carbohydrate source on productive performance, ruminal and systemic health of grazing cows. Revista Colombiana De Ciencias Pecuarias, 33(4), 204-216. https://doi.org/10.17533/udea.rccp.v33n4a01
Original research articles