Resistencia antimicrobiana en aislados de Escherichia coli de canales de ovejas asperjadas durante la refrigeración
DOI:
https://doi.org/10.17533/udea.rccp.v34n2a04Palabras clave:
antibiótico, antimicrobiano, aspersión, canales, enterobactérias, Escherichia coli, multiresistencia, organismos multiresistentes, ovejas, resistencia bacteriana, resistencia antibacteriana, resistencia microbiana, resistencia multiple, sacrificio, salud públicaResumen
Antecedentes: las bacterias multirresistentes presentes en alimentos de origen animal son motivo de alerta para la salud humana y animal. Objetivo: verificar la resistencia a antimicrobianos de aislados de Escherichia coli en canales ovinas sometidas a aspersión (4 y 10 h) durante la refrigeración. Métodos: Luego de dos faenas de sacrificio, treinta hisopos fueron colectados en la superficie de las canales antes y después de la última aspersión. En un primer sacrificio (1era colecta) se recolectaron muestras de tres canales sometidas a aspersión (4 horas), tres sin aspersión y una canal como control. En un segundo sacrificio (2da colecta), el mismo número de canales y tratamientos se mantuvo, y el período de aspersión se extendió a 10 horas. Las muestras recogidas fueron aisladas y sometidas a la prueba de susceptibilidad utilizándo 16 (1.ª colecta) y 17 (2.ª colecta) antimicrobianos, respectivamente. Resultados: los aislamientos de E. coli fueron, en general, resistentes a las principales clases de antimicrobianos. Las canales con aspersión y el control (10 h) presentaron resistencia al meropenem. Conclusión: cuando la asperción duró 10 h, los aislados de E. coli presentaron mayor resistencia para una, dos y cuatro clases de antimicrobianos, es decir, fueron multirresistentes a los fármacos utilizados. Esto resalta la necesidad de monitorear el estado de salud durante todos los procesos de producción de carne.
Descargas
Citas
Arslan S, Eyi A. Occurrence and microbial resistance profiles of Salmonella species in retail meat products. J Food Protect 2010; 73(9):1613–1617. DOI:https://doi.org/10.4315/0362-028X-73.9.1613
Barros MFA, Nero LA, Monteiro AA, Beloti V. Identification of main contamination points by hygiene indicator microorganisms in beef processing plants. Ciênc Tecnol Aliment 2007; 27(4):856–862. DOI:http://dx.doi.org/10.1590/S0101-20612007000400028
Bauer AW, Kirby WMM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Amer J Clin Pathol 1966; 45(4):493–496. DOI:https://doi.org/10.1093/ajcp/45.4_ts.493
Borch E, Arinder P. Bacteriological safety issues in beef and ready-to-eat meat products, as well as control measures. Meat Sci 2002; 62(3):381–390. DOI:https://doi.org/10.1016/S0309-1740(02)00125-0
CLSI. Performance standards for antimicrobial disk susceptibility tests; approved standard – eleventh edition. Wayne, PA: Clinical and Laboratory Standards Institute, 2015. DOI:https://clsi.org/media/1631/m02a12_sample.pdf
Dontorou C, Papadopoulou C, Filioussis G, Economou V, Apostolou I, Zakkas GA, Salamoura A, Kansouzidou A, Levidiotou S. Isolation of Escherichia coli O157:H7 from foods in Greece. Int J Antimicrob Ag 2003; 82(3):273–279. DOI: https://doi.org/10.1016/S0168-1605(02)00313-6
Jones SDM, Robertson WM. The effects of spray-chilling carcasses on shrinkage and quality of beef. Meat Sci1988; 24(3):177–188. DOI:https://doi.org/10.1016/0309-1740(88)90076-9
Krumperman PH. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl Environ Microbiol 1983; 46(1):165–1670. DOI: https://doi.org/0099-2240/83/070165-06$02.00/0
Lenahan M, Crowley H, O’Brien SB, Byrne C, Sweeney T, Sheridan JJ. The potential use of chilling to control the growth of Enterobacteriaceae on porcine carcasses and the incidence of E. coli O157:H7 in pigs. J Appl Microbiol 2009; 106(5):1512–1520. DOI:https://doi.org/10.1111/j.1365-2672.2008.04112.x
Lerma LL, Benomar N, Knapp CW, Galeote DC, Gálvez A, Abriouel, HLC. Diversity, distribution and quantification of antibiotic resistance genes in goat and lamb slaughterhouse surfaces and meat products. Plos One 2014; 9(12):1–17. DOI:https://doi.org/10.1371/journal.pone.0114252
Lindgren PK, Karlsson Å, Hughes D. Mutation rate and evolution of fluoroquinolone resistance in Escherichia coli isolates from patients with urinary tract infections. Antimicrob Agents Ch 2003; 47(10):3222–3232. DOI:https://doi.org/10.1128/AAC.47.10.3222-3232.2003
Magiorako AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Arroz LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18(3):268–281. DOI: https://doi.org/10.1111/j.1469-0691.2011.03570.x
Miró E, Sabaté M, Navarro F, Vergés C, Aliaga R, Mirelis B, Prats G. β-lactamases involved in resistance to broad-spectrum cephalosporins in Escherichia coli and Klebsiella spp. Clinical isolates collected between 1994 and 1996, in Barcelona (Spain). J Antimicrob Chemother 2002; 49(6):989-997. DOI:https://doi.org/10.1093/jac/dkf057
NZFSA. Sampling DRAFT Schedule 1: Technical procedures for the national microbiological database. 2008;50-60. URL: https://www.nzfsa.govt.nz/animalproducts/publications/manualsguides/nmd/nmd-tech-proced/checksheets/nmdchecklistguidelines.pdf
O’Brien TF. Emergence, spread, and environmental effect of antimicrobial resistance: How use of an antimicrobial anywhere can increase resistance to any antimicrobial anywhere else. Clin Infect Dis 2002; 34(3):78–84. DOI:https://doi.org/10.1086/340244
Ockerman HW, Basu L. Carcass chilling and boning. In: J. Werner Klinth (1 Ed.), Encyclopedia of Meat Sciences: Oxford: Elsevier; 2004;148–149.
Oliver SP, Murinda SE, Jayarao BM. Impact of antibiotic use in adult dairy cows on antimicrobial resistance of veterinary and human pathogens: A comprehensive review. Foodborne Pathog Dis 2011; 8(3):337–355. DOI:https://doi.org/10.1089/fpd.2010.0730
Phillips I, Casewell M, Cox T, De Groot B, Friis C, Jones R, Nightingale C , Preston R, Waddell J. Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J Antimicrob Chemother 2004; 23(1):28–52. DOI: https://doi.org/10.1093/jac/dkg483
Rahamathulla MP, Harish BN, Mataseje L, Mulvey MR. Carbapenem resistance mechanisms among blood isolates of Klebsiella pneumoniae and Escherichia coli. Afr J Microbiol Res 2016; 10(2):45-53. DOI:https://doi.org/10.5897/AJMR2015.7802
Rasmussen BA, Bush K, Keeney D, Yang Y, Hare R, O'Gara C, Medeiros AA. Characterization of IMI-1 β -Lactamase, a Class A Carbapenem Hydrolyzing Enzyme from Enterobacter cloacae. Antimicrob Agents Ch 1996; 40(3):2080–2086. DOI: https://doi.org/10.1128/AAC.40.9.2080
Sáenz Y, Zarazaga M, Briñas L, Lantero M, Ruiz-Larrea F, Torres C. Antibiotic resistance in Escherichia coli isolates obtained from animals, foods and humans in Spain. Int J Antimicrob Ag 2001; 18(4):353–358. DOI:https://doi.org/10.1016/S0924-8579(01)00422-8
Safdar N, Maki DG. The commonality of risk factors for nosocomial colonization and infection with antimicrobial-resistant Staphylococcus aureus, Enterococcus, gram-negative bacilli, Clostridium difficile, and Candida. Ann Intern Med 2002; 136(11):834–844. DOI:https://doi.org/10.7326/0003-4819-136-11-200206040-00013
Santos NQ. Bacterial resistance in the context of hospital infection. Texto Contexto Enferm 2004; 13(1):64-70. DOI:http://dx.doi.org/10.1590/S0104-07072004000500007
Stapleton PD, Shannon KP, French GL. Carbapenem resistance in Escherichia coli associated with plasmid-determined CMY-4 β-Lactamase production and loss of an outer membrane protein. Antimicrob Agents Ch 1999; 43 (5):1206–1210. DOI:https://doi.org/10.1128/AAC.43.5.1206
Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A. Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev 2009; 22(4):4664–6891. DOI:https://doi.org/10.1128/CMR.00016-09
Strydom PE, Buys EM. The effects of spray-chilling on carcass mass loss and surface associated bacteriology. Meat Sci 1995; 39(2):265–276. DOI: https://doi.org/10.1016/0309-1740(88)90076-9
Van Boeckel TP, Brower C, Gilbert M, Grenfella BT, Levina SA, Robinsoni TP, Teillant A, Laxminarayan R. Global trends in antimicrobial use in food animals. PNAS 2015; 112 (18):5649–5654. DOI: https://doi.org/10.1073/pnas.1503141112
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Revista Colombiana de Ciencias Pecuarias

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores permiten a RCCP reimprimir el material publicado en él.
La revista permite que los autores tengan los derechos de autor sin restricciones, y permitirá que los autores conserven los derechos de publicación sin restricciones.