Análisis de umbral bayesiano del tamaño de la camada en ovejas
DOI:
https://doi.org/10.17533/udea.rccp.v35n3a05Palabras clave:
análisis bivariado, análisis univariado, Bayesiano, genética materna, heredabilidad, mejora genética, modelos de umbral, oveja, parámetros genéticos, tamaño de la camadaResumen
Antecedentes: El tamaño de la camada al nacer (LSB) es inherentemente un rasgo categórico y debe analizarse con modelos de umbral. El LSB es uno de los rasgos de producción de carne más importantes en las ovejas y podría usarse en esquemas de mejora genética para la producción de carne. Objetivo: Se utilizaron modelos de umbral bayesiano para analizar el tamaño de la camada de ovejas al nacer (LSB) y estimar parámetros genéticos. Métodos: Los datos se basaron en 7.901 registros de LSB de 14.968 ovejas y 682 carneros recolectados de 1986 a 2012 en la estación de cría de ovejas Makouie en Irán. Se estimaron las medias de distribuciones posteriores (MPD) de los parámetros genéticos de LSB y se seleccionaron los modelos mejor ajustados utilizando el criterio de información de desviación. Resultados: En los análisis de medición repetida, la heredabilidad materna y directa estimada y el efecto ambiental permanente (±SE), según el modelo mejor ajustado (modelo 5), fueron 0,01 (0,010), 0,02 (0,014) y 0,01 (0,011), respectivamente. En el análisis univariado, las mejores estimaciones de heredabilidad directa y materna fueron 0,12 (0,064) y 0,08 (0,045), respectivamente. Se observó una tendencia creciente de heredabilidades directas y maternas en la paridad 2 (0,15 (0,082) y 0,25 (0,083), respectivamente). En el análisis bivariado, las mejores estimaciones de heredabilidad directa y materna para LSB fueron 0,03 (0,027) y 0,22 (0,041), respectivamente. Las correlaciones genéticas directas y maternas entre partos fueron 0,25 (0,054) y 0,12 (0,021), respectivamente. Conclusiones: Los resultados mostraron una influencia considerable de los factores ambientales sobre el LSB en cada parto de las ovejas; además, se obtuvieron parámetros genéticos estadísticamente diferentes (p<0.05) de un parto a otro, indicando las diferentes y grandes influencias de factores genéticos y ambientales para cada parto en ovejas. Los resultados de este estudio se pueden precisar aún más utilizando datos de SNP de todo el genoma sobre diferentes partes para manejar una amplia gama de problemas relacionados con la interacción del entorno genético del rasgo LSB.
Descargas
Citas
Abdel-Azim GA, Berger PJ. Properties of threshold model predictions. J Anim Sci1999; 77(3): 582-590. DOI: https://doi.org/10.2527/1999.773582x.
Allison PD. Logistic Regression using SAS Systems: Theory and Applications. Cary, NC, USA: SAS Institute Inc; 2001.
Altarriba J, Varona L, Garcia-cortes LA, Moreno C. Bayesian inference of variance components for twinning LSB in Rasa Aragonesa sheep. Anim Sci J 1998; 76(1): 23-28. DOI: https://doi.org/10.2527/1998.76123x.
Alves A, Lôbo A, Facó O, Silva L, Lôbo R. Genetic parameters for rank of the Santa Inês sheep in agricultural fairs using Bayesian procedures. Ital J Anim 2016; 15(4): 604-609. DOI: https://doi.org/10.1080/1828051X.2016.1248866.
Boujenane I, Chikhi A, Sylla M, Ibnelbachyr M. Estimation of genetic parameters and genetic gains for reproductive traits and body weight of D’man ewes. Small Rumin Res 2013; 113(1): 40-46. DOI: https://doi.org/10.1016/j.smallrumres.2013.02.009.
Bunter KL, Brown DJ. Yearling and adult expressions of reproduction in maternal sheep breeds are genetically different traits. In: Proceeding of the 20th Conference of the Association for the Advancement of Animal Breeding and Genetics; Napier, New Zealand; 2013. pp. 82-85.
Casellas J, Caja G, Ferret A, Piedrafita J. Analysis of litter size and days to lambing in the Ripollesa ewe: I. Comparison of models with linear and threshold approaches. J Anim Sci 2007; 85(3): 618-624. DOI: https://doi.org/10.2527/jas.2006-365.
Ciappesoni G, Goldberg V, Gimeno D. Estimates of genetic parameters for worm resistance, wool and growth traits in Merino sheep of Uruguay. Livest. Sci. 2013; 157(1): 65-74. DOI: https://doi.org/10.1016/j.livsci.2013.07.011.
De Vries MJ, Van-Der Wajj EH, Van-Arendoc JAM. Estimation of genetic parameters for LSB in sheep: a comparison of repeatability and a bivariate model. Anim Sci 1998; 66: 685-688.
Dominik S, Swan A. Genetic and phenotypic parameters for reproduction, production and bodyweight traits in Australian fine-wool Merino sheep. Anim Prod Sci 2016; 58(2): 207-212. DOI: https://doi.org/10.1071/AN15738.
Ekiz B, Özcan M, Yilmaz A, Ceyhan A. Estimation of phenotypic and genetic parameters for ewe productivity traits of Turkish merino (karacabey merino) sheep. Turk J Vet Anim Sci 2005; 29(2): 557-564.
Esmailizadeh A, Miraei-Ashtiani SR, Mokhtari MS, Asadi-Fozi M. Growth performance of crossbred lambs and productivity of Kurdi ewes as affected by the sire breed under extensive production system. J Agric Sci 2011; 13(5): 701-708.
Eteqadi B, Ghavi Hossein-Zadeh N, Shadparvar A. Genetic analysis of basic and composite reproduction traits in Guilan sheep. Ann. Anim. Sci. 2017; 17(1): 105-116. DOI: https://doi.org/10.1515/aoas-2016-0016.
Fogarty NM. Genetic parameters for live weight, fat and muscle measurements, wool production and reproduction in sheep: a review. Anim Breed Abstracts 1995; 63(3): 101-143.
Ghafouri-Kesbi F, Notter DR. Sex influence on genetic expressions of early growth in Afshari lambs. ARCH TIERZUCHT 2016; 59(1): 9-17.
Ghavi Hossein-Zadeh N, Ardalan M. Estimation of genetic parameters for body weight traits and litter size of Moghani sheep using a Bayesian approach via Gibbs sampling. J Agric Sci 2010; 148 (3): 363-370. DOI: https://doi.org/10.1017/S0021859610000080-
Gowane GR, Prince L, Lopes FB, Paswan C, Sharma RC. Genetic and phenotypic parameter estimates of live weight and daily gain traits in Malpura sheep using Bayesian approach. Small Rumin Res 2015; 128: 10-18. DOI: https://doi.org/10.1016/j.smallrumres.2015.04. 016.
Hagger C. Multitrait and repeatability estimates of random effects on litter size in sheep. Anim Sci 2002; 74(2): 209-216. doi:10.1017/S1357729800052371.
Hanford KJ, Van-Vleck LD, Snowder GD. Estimate of genetic parameters and genetic change for reproduction, weight and wool characteristics of Rambuillet sheep. Small Rumin Res 2005; 57: 175-186. DOI: https://doi.org/10.1016/j.smallrumres.2004.07.003.
Jafari S, Hashemi A, Darvishzadeh R, Manafiazar G. Genetic parameters of live body weight, body measurements, greasy fleece weight, and reproduction traits in Makouie sheep breed. Span J Agric Res 2014; 12(3): 653-663. DOI: https://doi.org/10.5424/ sjar/2014123-4564.
Jafari S, Hashemi A. Genetic analysis of fleece and post-weaning body weight traits in Makouie sheep. Genet Mol Res 2014; 13(1): 1079-1087. DOI: https://doi.org/10.4238/ 2014.February. 20.9.
Jafari S, Hashemi A, Manafiazer G, Darvishzadeh R, Razzaghzadeh S et al. Genetic analysis of growth traits in Iranian Makouie sheep breed. Ital J Anim 2012; 11(1): 98-102. DOI: https://doi.org/10.4081/ijas.2012.e18.
Júnior F, Silva LA, Sarmento J, Santos N, Sena LS et al. Estimate of genetic parameters for carcass traits and visual scores in meat sheep using Bayesian inference via threshold and linear models. Ciência Rural 2017; 47(3): 1-6. DOI: https://doi.org/10.1590/0103-8478cr20160174.
King R, Brooks SP, Morgan BJ, Coulson T. Factors influencing Soay sheep survival: A Bayesian analysis. Biometrics 2006; 62(1): 211-220. DOI: https://doi.org/10.1111/j.15410420.2005. 00404.x.
Latifi M, Mohammadi A, Bohlouli M, Alijani S. Estimation of genetic parameters of litter size in Moghani sheep using threshold model via Bayesian approach. J Liv Sci Tech 2017; 5(1): 59-65. DOI: https://doi.org/10.22103/jlst.2017.10533.1199.
Maxa J, Norberg E, Berg P, Pedersen J. Genetic parameters for growth traits and LSB in Danish Texel, Shropshire, Oxford Down and Suffolk. Small Rumin Res 2007; 68: 312-317. DOI: https://doi.org/10.1016/j.smallrumres.2005.12.001.
Mekkawy W, Rohe R, Lewis RM, Davis MH, Bunger L, Simm G, Haresign W. Comparison of repeatability and multiple trait threshold models in sheep using observed and simulated data in Bayesian analyses. J Anim Breed Genet 2010; 127: 261-271. DOI: https://doi.org/10.1111/j.1439-0388.2010. 00852.x.
Milán MJ, Caja G, González-González R, Fernández-Pérez AM, Such X. Structure and performance of Awassi and Assaf dairy sheep farms in northwestern Spain. Int J Dairy Sci 2011; 94(2): 771-784. DOI: https://doi.org/10.3168/jds.2010-3520.
Mohammadi K, Abdollahi-Arpanahi R, Amraei F, Mohammadi EM, Rashidi A. Genetic parameter estimates for growth and reproductive traits in Lori sheep. Small Rumin Res 2015; 131: 35-42. DOI: https://doi.org/10.1016/j.smallrumres.2015.07. 029.
Mohammadi H, Moradi-Shahrbabak M, Moradi-Shahrbabak H, Vatankhah M. Estimation of genetic parameters of reproductive traits in Zandi sheep using linear and threshold models. Czech J Anim Sci 2012; 57(7): 382-388. DOI: https://doi.org/10.17221/6274-CJAS.
Mohammadi H, Moradi-Shahrbabak M, Moradi-Shahrbabak H. Genetic analysis of ewe productivity traits in Makouei sheep. Small Rumin. Res 2012; 107(2): 105-110. DOI: https://doi.org/10.1016/j.smallrumres.2012.04.019.
Mokhtari MS, Rashidi A, Esmailzadeh AK. Estimation of phenotypic and genetic parameters for reproductive traits in Kermani sheep. Small Rumin Res 2010; 88: 27-31. DOI: https://doi.org/10.1016/j.smallrumres.2009.11.004.
Nagy I, Solkner J, Komlosi I, Safar L. Genetic parameters of production and fertility traits in Hungarian Merino sheep. J Anim Breed Genet 1999; 116: 399-413. DOI: https://doi.org/10.1046/j.1439-0388.1999.00204.x.
Newton JE, Brown DJ, Dominik S, Van der Werf J. Genetic and phenotypic parameters between yearling, hoggetand adult reproductive performance and age of first oestrus in sheep. Anim. Prod. Sci. 2014, 54(6): 753-761. DOI: https://doi.org/10.1071/AN13245.
Noguera JL, Varona L, Babot D, Estany J. Multivariate analysis of litter size for multiple parities with production traits in pigs: I. Bayesian variance component estimation. J Anim Sci 2002; 80(10): 2540-2547. DOI: https://doi.org/10.1093/ansci/80.10.2540.
Olesen I, Perez-enciso M, Gianola D, Thomas DL. A comparison of normal and nonnormal mixed models for number of lambs born in Norwegian sheep. J Anim Sci 1994; 72(5): 1166-1173. DOI: https://doi.org/10.2527/1994.7251166x.
Posht-e-Masari HA, Shadparvar A, Ghavi Hossein-Zadeh N, Tavatori M. Estimation of genetic parameters for reproductive traits in shall sheep. Trop Anim Health Prod 2013; 45(5): 1259-1263. DOI: https://doi.org/10.1007/s11250-013-0357-8.
Rahimi SM, Rafat SA, Jafari S. Effects of environmental factors on growth traits in Makuie sheep. Biotechnol Anim Husb 2014; 30(2): 185-192. DOI: https://doi.org/10.2298/ BAH1402185R.
Roehe R, Kennedy BW. Estimation of genetic parameters for LSB in Canadian Yorkshire and Landrace swine with each parity of farrowing treated as a different trait. J Anim Sci 1995; 73(10): 2959-2970. DOI: https://doi.org/10.2527/1995.73102959x.
Roshanfekr H, Berg P, Mohammadi K, Mohammadi EM. Genetic parameters and genetic gains for reproductive traits of Arabi sheep. Biotechnol. Anim. Husb 2015; 31(1): 23-36. DOI: https://doi.org/10.2298/BAH1501023R-
Sargolzaei M, Iwaisaki H, Colleau J. CFC: A tool for monitoring genetic diversity. In: Proceeding 8th World Congress on Genetics Applied Livestock Production; Belo Horizonte, Brazil; 2006. pp. 13-18.
Sodiq A, Yuwono P, Santosa SA. Litter Size and lamb survivability of Batur sheep in upland areas of Banjarnegara Regency Indonesia. Anim Prod 2011; 13(3): 166-172.
Vargas Jurado N, Leymaster KA, Kuehn LA, Lewis RM. Estimating heritability of wool shedding in a cross‐bred ewe population. J ANIM BREED GENET 2016; 133(5): 396-403. DOI: https://doi.org/10.1111/jbg.12215.
Vatankhah M, Moradi-Sharebabak M, Nejati-Javarami A, Miraei-Ashtiani SR, Vaez-Torshizi R. A review of sheep breeding in Iran. In: Proceeding of Iranian Conference of Aquatic Animal Science; Tehran, Iran; 2004. pp. 591-597.
Vatankhah M, Talebi MA. Heritability estimate and correlation between production and reproductive traits in Lori-Bakhtiari sheep in Iran. S Afr J Anim Sci. 2008; 38(2): 110-118. DOI: https://doi.org/10.4314/sajas.v38i2.4116.
Yadollahi S, Gholizadeh M, Hafezian H. Bayesian inference on genetic parameters for some reproductive traits in sheep using linear and threshold models. J Small Rum Res 2019; 170: 149-153. DOI: https://doi.org/10.1016/j.smallrumres.2018.12.001.
Yavarifard R, Ghavi Hossein-Zadeh N, Shadparvar A. Estimation of genetic parameters for reproductive traits in Mehraban sheep. Czech J Anim Sci 2015; 60(6): 281-288. DOI: https://doi.org/10.17221/8242-CJAS.
Yazdi MH, Johansson K, Gates P, Nasholm A, Jorjani H et al. Bayesian analysis of birth weight and LSB in Baluchi sheep using Gibbs sampling. J Anim Sci 1999; 77(3): 533-540. DOI: https://doi.org/10.2527/1999.773533x.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Revista Colombiana de Ciencias Pecuarias

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores permiten a RCCP reimprimir el material publicado en él.
La revista permite que los autores tengan los derechos de autor sin restricciones, y permitirá que los autores conserven los derechos de publicación sin restricciones.