Agronomic characteristics of Tamani grass managed under different combinations of frequency and intensity of defoliation
DOI:
https://doi.org/10.17533/udea.rccp.v37n2a5Keywords:
biomass, defoliation, forage production, leaf area index, Megathyrsus maximus, pasture, photosynthetically active radiation, semiarid region, vegetation indexAbstract
Background: Management strategies may affect plant growth and herbage characteristics. Thus, understanding its impact may help to define appropriate management. Objective: To evaluate the effect of different defoliation intensities and frequencies on the structural characteristics, biomass components and the potential use of NDVI (normalized difference vegetation index) in pastures with Megathyrsus maximus cv. BRS Tamani. Methods: A randomized block design in a 2x3factorial arrangement was adopted, with two defoliation frequencies (85 and 95% of interception of photosynthetically active radiation (IPAR) and three defoliation intensities (residual leaf area index (LAIr) of 0.8, 1.3 and 1.8). Results: The frequency of defoliation affected the pre-defoliation leaf area index, height, total harvestable forage biomass (HTFB), and harvestable leaf blade (HGLB), with greater values for pastures managed at 95% of IPAR. The effect of intensity of defoliation was observed for the HTFB and HGLB variables, where pastures with lesser LAIr presented greater biomass values. Pastures managed at 95% of IPAR and higher LAIr reached the level of saturation of the normalized difference vegetation index more quickly. Pastures managed under the combination of 95% IPAR and LAIr of 0.8 showed greater production of harvestable green stem biomass and harvestable dead forage biomass. The combination of 95% of IPAR with LAIr of 0.8 or 1.8 enabled a greater number of new live leaves when compared to pastures with 85% of IPAR. Conclusions: Tamani grass must be managed with a frequency of defoliation of 95% of the interception of photosynthetically active radiation, maintaining a residual leaf area index between 0.8 and 1.3.
Downloads
References
Almeida ACS, Mingoti R, Coelho RD, Lourenço LF. Simulation of irrigated Tanzania grass growth based on photothermal units, nitrogen fertilization and water availability. Acta Sci Agron 2011; 33(2): 215-222. https://doi.org/10.4025/actasciagron.v33i2.4901
Cano CCP, Cecato U, Canto MW, Santos GT, Galbeiro S, Martins EM, Mira RT. Nutritive value of Tanzania grass (Panicum maximum Jacq. cv. Tanzânia-1) grazed at different heights. R Bras Zootec 2004; 33(6): 1959-1968.
Comissão de Fertilidade do Solo do Estado de Minas Gerais - CFSEMG. Recomendações para uso de corretivos e fertilizantes em Minas Gerais, Viçosa: UFV; 1999.
Confortin ACC, Quadros MG, Glienke CL, Rossi GE, Moraes AB. Structural and morphogenical characteristics of black oats and Italian ryegrass on pasture submitted to two grazing intensities. R Bras Zootec 2010; 39(11): 2357-2365. https://doi.org/10.1590/S1516-35982010001100007
Costa NL, Jank L, Magalhães JÁ, Bendahan AB, Rodrigues BHN, Santos FJS. Agronomic performance and chemical composition of genotypes and cultivars of Megathyrsus maximus in Roraima’s savanas. Res Soc Dev, 2022; 11(9): e55011932285. https://doi.org/10.33448/rsd-v11i9.32285
Cutrim Júnior JAA, Cândido MJD, Valente BSM, Carneiro MSS, Carneiro HAV, Cidrão PML. Biomass flow of the Tanzânia grass under three defoliation frequencies and two post-grazing residues. Rev Bras Saúde Prod Na 2010; 11(3): 618-629
Cutrim Júnior JAA, Cândido MJD, Valente BSM, Carneiro MSS, Carneiro HAV. Structural characteristcs of Tanzania grass canopy submitted to three frequencies of defoliation and two post-grazing residues. R Bras Zootec 2011; 40(3): 489-497. https://doi.org/10.1590/S1516-35982011000300005
Fundação Cearense de Meteorologia e Recursos Hídricos – FUNCEME. (2019). Calendários das chuvas no estado do Ceará. [access date: 09/20/2019]. http://www.hidro.ce.gov.br/municipios/chuvas-diarias.
Gastal F, Lemaire G. Defoliation, shoot plasticity, sward structure and herbage utilization in pasture: review of the underlying ecophysiological processes. Agriculture 2015; 5(4): 1146-1171. https://doi.org/10.3390/agriculture5041146
Gomide JA. Fisiologia e manejo de plantlas forrageiras. R Soc Bras Zootec 1973; 2(1): 17-26.
Ji L, Peters AJ. Performance evaluation of spectral vegetation indices using a statistical sensitivity function. Remote Sens Environ 2007; 106(1): 59-65. https://doi.org/10.1016/j.rse.2006.07.010
Köppen W. Das geographische System der Klimate. In: Köppen WR. Geiger (Eds). Handbuch der Klimatologie, Berlin: Gebrüder Borntraeger; 1936. 1-44.
Lambers H, Chapim III FS, Pons TL. Plant physiological ecology. New York: Springer 2008. https://doi.org/10.1007/978-0-387-78341-3
Lemos NLS, Ruggieri AC, Silva CV, Campos AF, Malheiros EB, Teixeira IAMA. Tanzania grass structure grazed by goats managed with different residual leaf area index under intermittent stocking. Biosci J 2014; 30(6): 1811-1818.
Lemos NLS, Ruggieri AC, Silva CV, Meister NC, Alari FO, Malheiros EB. Residual leaf area index as strategy to management of pasture: structure of Tanzania grass. Rev Bras Ciênc Agrár 2019; 14(3): e5679. https://doi.org/10.5039/agraria.v14i3a5679
Lima JRL, Rodrigues RC, Sousa GOC, Costa CS, Parente HN, Santos FNS. Ecophysiology of Andropogon grass subjected to different cutting frequencies and intensities. Rev Bras Eng Agrí Ambient 2020; 24(9): 610-615. https://doi.org/10.1590/1807-1929/agriambi.v24n9p610-615
Martuscello JA, Rios JF, Ferreira MR, Assis JA, Braz TGS, Cunha DV. Production and morphogenesis of BRS Tamani grass under different nitrogen rates and defoliation intensities. Bol Ind Anim 2019; 76: 1-10. https://doi.org/10.17523/bia.2019.v76.e1441
Parsons AJ, Leafe EL, Collett B, Penning PD, Lewis J. The physiology of grass production under grazing. II. Photosynthesis, crop growth and animal intake of continuously-grazed swards. J Appl Ecol 1983; 20(1): 127-139. https://doi.org/10.2307/240338
Povh, FP, Molin JP, Gimenez LM, Pauletti V, Molin R, Salvi JV. Behavior of NDVI obtained from an active optical sensor in cereals. Pesq Agropec Bras 43(8): 1075-1083. https://doi.org/10.1590/S0100-204X2008000800018
Risso J, Rizzim R, Rudorffm BFT, Adami M, Shimabukuro YE, Formaggio AR, Apiphanio RDV. Modis vegetation indices applied to soybean area discrimination. Pesq Agropec Bras 2012; 47(9): 1317-1326. https://doi.org/10.1590/S0100-204X2012000900017
Santos GO, Rosalen DL, Faria RT. Use of active optical sensor in the characteristics analysis of the fertigated Brachiaria with treated sewage. Journal of the Brazilian Eng. Agriv 2017; 37(6): 1213-1221. https://doi.org/10.1590/1809-4430-Eng.Agric.v37n6p1213-1221/2017
SAS Institute. SAS system for windows. Version 9.0. Cary, NC, USA: SAS Institute Inc. 2002.
Santos MER, Fonseca DM, Balbino EM, Silva SP, Monnerat JPIS. Nutritive value of tillers and morphological components on deferred and nitrogen fertilized pastures of Brachiaria decumbens cv. Basilisk. R.Bras Zootec 2010; 39(9): 1919-1927.
Silva LV, Cândido MJD, Pessoa JPM, Cavalaznte ACR, Carneiro MSS, Silva NA. Biomass components and structural features in Guinea grass under different frequencies and intensities of defoliation. Pesq Agropec Bras 2015; 50(12); 1192-1200. https://doi.org/10.1590/S0100-204X2015001200009
Sousa GJ, Alexandrino E, Santos AC, Freitas MVL. Megathyrsus Maximus cv. Massai at different cutting frequencies. Semin Ciênc Agrár 2019; 40(5): 1913-1924. https://doi.org/10.5433/1679-0359.2019v40n5p1913
Stobbs TH. The effect of plant structure on the intake of tropical pastures. II. Differences in sward structure, nutritive value, and bite size of animals grazing Setaria anceps and .Chloris gayana at various stages of growth. Aust J Agric Res 1973; 24(809): 821-829. https://doi.org/10.1071/AR9730821
Tesk CRM, Cavalli J, Pina DS, Pereira DH, Pedreira GS, Jank L, Sollenberger LE, Pedreira BC. Herbage responses of Tamani and Quênia guineagrasses to grazing intensity. Agron J 2020; 112(3): 2081-2091. https://doi.org/10.1002/agj2.20189
Vasconcelos ECG, Cândido MJD, Pompeu RCFF, Cavalcante ACR, Lopes, MN. Morphogenesis and biomass production of 'BRS Tamani' guinea grass under increasing nitrogen doses. Pesq Agropec Bras 2020; 55: e01235. https://doi.org/10.1590/S1678-3921.pab2020.v55.01235
Villa Nova NA, Tonato F, Pedreira CGS, Medeiros HR. Alternate method to compute the base temperature of forage grasses. Cienc Rural 2007; 32(2): 545-549. https://doi.org/10.1590/S0103-84782007000200039
Downloads
Published
Versions
- 2024-10-23 (2)
- 2024-10-23 (1)
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Colombiana de Ciencias Pecuarias
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors enable RCCP to reprint the material published in it.
The journal allows the author(s) to hold the copyright without restrictions, and will allow the author(s) to retain publishing rights without restrictions.