Incorporación de Uracilo ADN glicosilasa / dUTPs en la reacción de PCR anidada para detectar Plasmodium falciparum y Plasmodium vivax: una estrategia para reducir el riesgo de contaminación
DOI:
https://doi.org/10.17533/udea.acbi.v42n113a06Palabras clave:
Contaminación de ADN, Malaria, Plasmodium sp., Reacción en Cadena de la Polimerasa, Uridina trifosfatoResumen
La reacción en cadena de la polimerasa (PCR) se emplea en investigación y como prueba diagnóstica para confirmar la infección malárica en muestras clínicas. Por ser un método con una sensibilidad cercana a 100%, es susceptible a la contaminación por amplicones, cuando se procesa un gran volumen de muestras, aumentando el riesgo de falsos positivos. Este estudio evaluó la incorporación del sistema uracilo ADN glicosilasa (UDG)-dUTPs en la reacción de PCR anidada (nPCR) para Plasmodium falciparum y Plasmodium vivax, como estrategia para prevenir la contaminación por amplicones en nuevas reacciones. Se empleó ADN de la cepa 3D7 de P. falciparum y una muestra clínica con infección confirmada por P. vivax. Se evaluó el efecto de reemplazar dTTPs por dUTPs en la reacción de nPCR y se verificó su efecto en el límite de detección. Se evaluó la acción degradante de la enzima UDG en reacciones de PCR contaminadas artificialmente con amplicones. Se cuantificó el ADN contaminante que fue capaz de degradar una unidad de UDG en este sistema. La sustitución de dTTPs por dUTPs no afectó la función de la Taq polimerasa, sin embargo, se observó una ligera disminución en la sensibilidad analítica de la nPCR cuando se incorporaron dUTPs. En reacciones contaminadas, la UDG fue capaz de degradar exclusivamente los amplicones contaminantes, sin afectar la amplificación del ADN nativo. Una unidad de UDG logró degradar completamente hasta 6 pg/µl de ADN contaminante. El sistema UDG-dUTPs puede prevenir la contaminación para mejorar el diagnóstico molecular en malaria.
Descargas
Citas
Aslanzadeh, J. (2004). Preventing PCR amplification carryover contamination in a clinical laboratory. Annals of Clinical and Laboratory Science, 34(4), 389–396. http://www.annclinlabsci.org/content/34/4/389.long
Bacich, D.J., Sobek, K.M., Cummings, J.L., Atwood, A.A., and O’Keefe, D.S. (2011). False negative results from using common PCR reagents. BMC Research Notes, 4(1), 1–7. DOI: 10.1186/1756-0500-4-457
Berzosa, P., de Lucio, A., Romay-Barja, M., Herrador, Z., González, V., García, L., Fernández-Martínez, A., Santana-Morales, M., Ncogo, P., Valladares, B., Riloha, M., and Benito, A. (2018). Comparison of three diagnostic methods (microscopy, RDT, and PCR) for the detection of malaria parasites in representative samples from Equatorial Guinea. Malaria Journal, 17(1), 1–12. DOI: 10.1186/s12936-018-2481-4
Bessman, M.J., Lehman, I.R., Adler, J., Zimmerman, S.B., Simms, E.S., and Kornberg, A. (1958). Enzymatic synthesis of deoxyribonucleic acid. III. The incorporation of pyrimidine and purine analogues into deoxyribonucleic acid. Proceedings of the National Academy of Sciences, 44(7), 633–640. DOI: 10.1073/pnas.44.7.633
Borst, A., Box, A.T.A., and Fluit, A.C. (2004). False-positive results and contamination in nucleic acid amplification assays: Suggestions for a prevent and destroy strategy. European Journal of Clinical Microbiology & Infectious Diseases, 23(4), 289–299. DOI: 10.1007/s10096-004-1100-1
Cortés, L.J. y Guerra, Á.P. (2020). Análisis de concordancia de tres pruebas para el diagnóstico de malaria en la población sintomática de los municipios endémicos de Colombia. Biomédica, 40(1), 117–128. DOI: 10.7705/biomedica.4893
Fallahi, S., Moosavi, S.F., Karimi, A., Chegeni, A.S., Saki, M., Namdari, P., Rashno, M.M., Varzi, A.M., Tarrahi, M.J., and Almasian, M. (2018). An advanced uracil DNA glycosylase-supplemented loop-mediated isothermal amplification (UDG-LAMP) technique used in the sensitive and specific detection of Cryptosporidium parvum, Cryptosporidium hominis, and Cryptosporidium meleagridis in AIDS patients. Diagnostic Microbiology and Infectious Disease, 91(1), 6–12. DOI: 10.1016/j.diagmicrobio.2017.12.017
Gamboa, D., Ho, M.-F., Bendezu, J., Torres, K., Chiodini, P.L., Barnwell, J.W., Incardona, S., Perkins, M., Bell, D., McCarthy, J., and Cheng, Q. (2010). A large proportion of P. falciparum isolates in the Amazon Region of Peru lack pfhrp2 and pfhrp3: Implications for malaria rapid diagnostic tests. PLoS ONE, 5(1), e8091. DOI: 10.1371/journal.pone.0008091
Grignard, L., Nolder, D., Sepúlveda, N., Berhane, A., Mihreteab, S., Kaaya, R., Phelan, J., Moser, K., van Schalkwyk, D.A., Campino, S., Parr, J.B., Juliano, J.J., Chiodini, P., Cunningham, J., Sutherland, C.J., Drakeley, C., and Beshir, K.B. (2020). A novel multiplex qPCR assay for detection of Plasmodium falciparum with histidine-rich protein 2 and 3 (pfhrp2 and pfhrp3) deletions in polyclonal infections. EBioMedicine, 55, 102757. DOI: 10.1016/j.ebiom.2020.102757
Hsieh, K., Mage, P.L., Csordas, A.T., Eisenstein, M., and Tom Soh, H. (2014). Simultaneous elimination of carryover contamination and detection of DNA with uracil-DNA-glycosylase-supplemented loop-mediated isothermal amplification (UDG-LAMP). Chemical Communications, 50(28), 3747. DOI: 10.1039/c4cc00540f
Instituto Nacional de Salud. (2019). Boletín epidemiológico semanal 52 de 2019. Boletín Epidemiológico Semanal, 1–28. DOI: 10.33610/23576189.2019.52
Instituto Nacional de Salud. (2020). Informe de Evento, Malaria. Periodo Epidemiológico VII, Colombia 2020. https://www.ins.gov.co/buscador-eventos/Informesdeevento/MALARIA%20PE%20VII%202020.pdf
Johnston, S.P., Pieniazek, N.J., Xayavong, M.V., Slemenda, S.B., Wilkins, P.P., and da Silva, A.J. (2006). PCR as a confirmatory technique for laboratory diagnosis of malaria. Journal of Clinical Microbiology, 44(3), 1087–1089. DOI: 10.1128/jcm.44.3.1087-1089.2006
Kassaza, K., Operario, D.J., Nyehangane, D., Coffey, K.C., Namugosa, M., Turkheimer, L., Ojuka, P., Orikiriza, P., Mwanga-Amumpaire, J., Byarugaba, F., Bazira, J., Guler, J. L., Moore, C.C., and Boum, Y. (2017). Detection of Plasmodium species by high-resolution melt analysis of DNA from blood smears acquired in Southwestern Uganda. Journal of Clinical Microbiology, 56(1), 1–9. DOI: 10.1128/jcm.01060-17
Kil, E.-J., Kim, S., Lee, Y.-J., Kang, E.-H., Lee, M., Cho, S.-H., Kim, M.-K., Lee, K.-Y., Heo, N.-Y., Choi, H.-S., Kwon, S.-T., and Lee, S. (2015). Advanced loop-mediated isothermal amplification method for sensitive and specific detection of Tomato chlorosis virus using an uracil DNA glycosylase to control carry-over contamination. Journal of Virological Methods, 213, 68–74. DOI: 10.1016/j.jviromet.2014.10.020
Lau, Y.L., Palaeya, V., Anthony, C.N., Fong, M.Y., Chang, P.Y., Mahmud, R., and Lai, M.Y. (2015). Comparison of Three Molecular Methods for the Detection and Speciation of Five Human Plasmodium Species. The American Journal of Tropical Medicine and Hygiene, 92(1), 28–33. DOI: 10.4269/ajtmh.14-0309
Longo, M.C., Berninger, M.S., and Hartley, J.L. (1990). Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene, 93(1), 125–128. DOI: 10.1016/0378-1119(90)90145-h
Lucchi, N.W., Ljolje, D., Silva-Flannery, L., and Udhayakumar, V. (2016). Use of malachite green-loop mediated isothermal amplification for detection of Plasmodium spp. parasites. PLOS ONE, 11(3), e0151437. DOI: 10.1371/journal.pone.0151437
Lucchi, N.W., Ndiaye, D., Britton, S., and Udhayakumar, V. (2018). Expanding the malaria molecular diagnostic options: opportunities and challenges for loop-mediated isothermal amplification tests for malaria control and elimination. Expert Review of Molecular Diagnostics, 18(2), 195–203. DOI: 10.1080/14737159.2018.1431529
Martins, T.B., Hillyard, D.R., Litwin, C.M., Taggart, E.W., Jaskowski, T.D., and Hill, H.R. (2000). Evaluation of a PCR Probe Capture Assay for the Detection of Toxoplasma gondii. American Journal of Clinical Pathology, 113(5), 714–721. DOI: 10.1309/2mwt-x9ph-v43m-v3mq
Mfuh, K.O., Achonduh-Atijegbe, O.A., Bekindaka, O.N., Esemu, L.F., Mbakop, C.D., Gandhi, K., Leke, R.G.F., Taylor, D.W., and Nerurkar, V.R. (2019). A comparison of thick-film microscopy, rapid diagnostic test, and polymerase chain reaction for accurate diagnosis of Plasmodium falciparum malaria. Malaria Journal, 18(1), 1–8. DOI: 10.1186/s12936-019-2711-4
Montiel, J., Carbal, L.F., Tobón-Castaño, A., Vásquez, G.M., Fisher, M.L., and Londono-Rentería, B. (2020a). IgG antibody response against Anopheles salivary gland proteins in asymptomatic Plasmodium infections in Narino, Colombia. Malaria Journal, 19(1), 1–13. DOI: 10.1186/s12936-020-3128-9
Montiel, J., Zuluaga, L.M., Aguirre, D.C., Segura, C., Tobon-Castaño, A., and Vásquez, A.M. (2020b). Microscopic and submicroscopic Plasmodium infections in indigenous and non-indigenous communities in Colombia. Malaria Journal, 19(1), 1–12. DOI: 10.1186/s12936-020-03226-4
Mosbaugh, D.W. (1988). Purification and characterization of porcine liver DNA polymerase γ: utilitzation of dUTP and dTTP duringin vitroDNA synthesis. Nucleic Acids Research, 16(12), 5645–5659. DOI: 10.1093/nar/16.12.5645
Nazaré, P.G., da Silva, F., Ferreira, M.C., Fortes, F., Rojas, L.R., and Dimbu, P.R. (Eds.). (2014). Evaluation of the quality of malaria diagnosis by optical microscopy in provincial laboratories of the Republic of Angola. Revista Cubana de Medicina Tropical, 66(2), 191–201. https://www.medigraphic.com/pdfs/revcubmedtro/cmt-2014/cmt142d.pdf
Pang, J., Modlin, J., and Yolken, R. (1992). Use of modified nucleotides and uracil-DNA glycosylase (UNG) for the control of contamination in the PCR-based amplification of RNA. Molecular and Cellular Probes, 6(3), 251–256. DOI: 10.1016/0890-8508(92)90024-r
Pava, Z., Murillo, C., Echeverry, D.F., and Díaz, G. (2010). Large variation in detection of Histidine-rich protein 2 in Plasmodium falciparum isolates from Colombia. The American Journal of Tropical Medicine and Hygiene, 83(4), 834–837. DOI: 10.4269/ajtmh.2010.10-0075
Pöschl, B., Thekisoe, O., Chutipongvivate, S., Panagiotis, K., and Waneesorn, J. (2010). Comparative diagnosis of malaria infections by microscopy, nested PCR, and LAMP in Northern Thailand. The American Journal of Tropical Medicine and Hygiene, 83(1), 56–60. DOI: 10.4269/ajtmh.2010.09-0630
Schormann, N., Ricciardi, R., and Chattopadhyay, D. (2014). Uracil-DNA glycosylases-structural and functional perspectives on an essential family of DNA repair enzymes. Protein Science, 23(12), 1667–1685. DOI: 10.1002/pro.2554
Singh, B., Snounou, G., Abdullah, M.S., Rahman, H.A., Bobogare, A., and Cox-Singh, J. (1999). A genus- and species-specific nested polymerase chain reaction malaria detection assay for epidemiologic studies. The American Journal of Tropical Medicine and Hygiene, 60(4), 687–692. DOI: 10.4269/ajtmh.1999.60.687
Snounou, G. and White, N.J. (2004). The co-existence of Plasmodium: Sidelights from falciparum and vivax malaria in Thailand. Trends in Parasitology, 20(7), 333–339. DOI: 10.1016/j.pt.2004.05.004
Tang, Y., Chen, H., and Diao, Y. (2016). Advanced uracil DNA glycosylase-supplemented real-time reverse transcription loop-mediated isothermal amplification (UDG-rRT-LAMP) method for universal and specific detection of Tembusu virus. Scientific Reports, 6(1), 1–12. DOI: 10.1038/srep27605
Vallejo, A.F., Chaparro, P.E., Benavides, Y., Álvarez, Á., Quintero, J.P., Padilla, J., Arévalo-Herrera, M., and Herrera, S. (2015). High prevalence of sub-microscopic infections in Colombia. Malaria Journal, 14(1), 1–7. DOI: 10.1186/s12936-015-0711-6
Vásquez, A.M., Medina, A.C., Tobón-Castaño, A., Posada, M., Vélez, G.J., Campillo, A., González, I.J., and Ding, X. (2018). Performance of a highly sensitive rapid diagnostic test (HS-RDT) for detecting malaria in peripheral and placental blood samples from pregnant women in Colombia. PLOS ONE, 13(8), e0201769. DOI: 10.1371/journal.pone.0201769
Wang, X., Chen, T., Kim, D., and Piomelli, S. (1992). Prevention of carryover contamination in the detection of βS and βC genes by polymerase chain reaction. American Journal of Hematology, 40(2), 146–148. DOI: 10.1002/ajh.2830400212
World Health Organization. (2019). World malaria report 2019. https://www.who.int/publications/i/item/world-malaria-report-2019
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Actualidades Biológicas
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores autorizan de forma exclusiva, a la revista Actualidades Biológicas a editar y publicar el manuscrito sometido en caso de ser recomendada y aceptada su publicación, sin que esto represente costo alguno para la Revista o para la Universidad de Antioquia.
Todas las ideas y opiniones contenidas en los artículos son de entera responsabilidad de los autores. El contenido total de los números o suplementos de la revista, está protegido bajo Licencia Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional, por lo que no pueden ser empleados para usos comerciales, pero sí para fines educativos. Sin embargo, por favor, mencionar como fuente a la revista Actualidades Biológicas y enviar una copia de la publicación en que fue reproducido el contenido.