Uracil-DNA-glycosilase system (UDG-dUTPs) incorporation in nested PCR reaction for Plasmodium falciparum and Plasmodium vivax detection: a strategy for reducing risk of contamination
DOI:
https://doi.org/10.17533/udea.acbi.v42n113a06Keywords:
DNA contamination, Malaria, Plasmodium sp., Polymerase Chain Reaction, Uridine triphosphateAbstract
Polymerase chain reaction (PCR) has been used in research and diagnostics as method to confirm malaria infections. Due to its high sensitivity, this method is susceptible to amplicon contamination, when high number of samples are processed, increasing the risk of false positives. This study aimed at evaluating the incorporation of Uracil DNA glycosylase-dUTPs (UDG-dUTPs) system to nested PCR reaction (nPCR) for Plasmodium falciparum and Plasmodium vivax, as a strategy to prevent contamination in new reactions. The DNA of P. falciparum 3D7 strain and a clinical sample confirmed with P. vivax were used in all reactions. The effect of replacing dTTPs by dUTPs in nPCR reaction was evaluated, and the effect of this modification on the limit of detection was verified. The degradative action of the UDG was evaluated in artificially contaminated reactions with amplicons. The amount of contaminating DNA that was degraded by a unit of UDG was quantified. Replacement of dTTPs by dUTPs did not affect Taq polymerase performance, however, a slight decrease in the analytical sensitivity of nPCR when using dUTPs was observed. UDG was able to exclusively degrade the contaminants without affecting the amplification of the native DNA. One unit of UDG was able to completely degrade contaminating DNA up to approximately 6 pg/μL. UDG-dUTPs system can prevent contamination to improve molecular malaria diagnosis.
Downloads
References
Aslanzadeh, J. (2004). Preventing PCR amplification carryover contamination in a clinical laboratory. Annals of Clinical and Laboratory Science, 34(4), 389–396. http://www.annclinlabsci.org/content/34/4/389.long
Bacich, D.J., Sobek, K.M., Cummings, J.L., Atwood, A.A., and O’Keefe, D.S. (2011). False negative results from using common PCR reagents. BMC Research Notes, 4(1), 1–7. DOI: 10.1186/1756-0500-4-457
Berzosa, P., de Lucio, A., Romay-Barja, M., Herrador, Z., González, V., García, L., Fernández-Martínez, A., Santana-Morales, M., Ncogo, P., Valladares, B., Riloha, M., and Benito, A. (2018). Comparison of three diagnostic methods (microscopy, RDT, and PCR) for the detection of malaria parasites in representative samples from Equatorial Guinea. Malaria Journal, 17(1), 1–12. DOI: 10.1186/s12936-018-2481-4
Bessman, M.J., Lehman, I.R., Adler, J., Zimmerman, S.B., Simms, E.S., and Kornberg, A. (1958). Enzymatic synthesis of deoxyribonucleic acid. III. The incorporation of pyrimidine and purine analogues into deoxyribonucleic acid. Proceedings of the National Academy of Sciences, 44(7), 633–640. DOI: 10.1073/pnas.44.7.633
Borst, A., Box, A.T.A., and Fluit, A.C. (2004). False-positive results and contamination in nucleic acid amplification assays: Suggestions for a prevent and destroy strategy. European Journal of Clinical Microbiology & Infectious Diseases, 23(4), 289–299. DOI: 10.1007/s10096-004-1100-1
Cortés, L.J. y Guerra, Á.P. (2020). Análisis de concordancia de tres pruebas para el diagnóstico de malaria en la población sintomática de los municipios endémicos de Colombia. Biomédica, 40(1), 117–128. DOI: 10.7705/biomedica.4893
Fallahi, S., Moosavi, S.F., Karimi, A., Chegeni, A.S., Saki, M., Namdari, P., Rashno, M.M., Varzi, A.M., Tarrahi, M.J., and Almasian, M. (2018). An advanced uracil DNA glycosylase-supplemented loop-mediated isothermal amplification (UDG-LAMP) technique used in the sensitive and specific detection of Cryptosporidium parvum, Cryptosporidium hominis, and Cryptosporidium meleagridis in AIDS patients. Diagnostic Microbiology and Infectious Disease, 91(1), 6–12. DOI: 10.1016/j.diagmicrobio.2017.12.017
Gamboa, D., Ho, M.-F., Bendezu, J., Torres, K., Chiodini, P.L., Barnwell, J.W., Incardona, S., Perkins, M., Bell, D., McCarthy, J., and Cheng, Q. (2010). A large proportion of P. falciparum isolates in the Amazon Region of Peru lack pfhrp2 and pfhrp3: Implications for malaria rapid diagnostic tests. PLoS ONE, 5(1), e8091. DOI: 10.1371/journal.pone.0008091
Grignard, L., Nolder, D., Sepúlveda, N., Berhane, A., Mihreteab, S., Kaaya, R., Phelan, J., Moser, K., van Schalkwyk, D.A., Campino, S., Parr, J.B., Juliano, J.J., Chiodini, P., Cunningham, J., Sutherland, C.J., Drakeley, C., and Beshir, K.B. (2020). A novel multiplex qPCR assay for detection of Plasmodium falciparum with histidine-rich protein 2 and 3 (pfhrp2 and pfhrp3) deletions in polyclonal infections. EBioMedicine, 55, 102757. DOI: 10.1016/j.ebiom.2020.102757
Hsieh, K., Mage, P.L., Csordas, A.T., Eisenstein, M., and Tom Soh, H. (2014). Simultaneous elimination of carryover contamination and detection of DNA with uracil-DNA-glycosylase-supplemented loop-mediated isothermal amplification (UDG-LAMP). Chemical Communications, 50(28), 3747. DOI: 10.1039/c4cc00540f
Instituto Nacional de Salud. (2019). Boletín epidemiológico semanal 52 de 2019. Boletín Epidemiológico Semanal, 1–28. DOI: 10.33610/23576189.2019.52
Instituto Nacional de Salud. (2020). Informe de Evento, Malaria. Periodo Epidemiológico VII, Colombia 2020. https://www.ins.gov.co/buscador-eventos/Informesdeevento/MALARIA%20PE%20VII%202020.pdf
Johnston, S.P., Pieniazek, N.J., Xayavong, M.V., Slemenda, S.B., Wilkins, P.P., and da Silva, A.J. (2006). PCR as a confirmatory technique for laboratory diagnosis of malaria. Journal of Clinical Microbiology, 44(3), 1087–1089. DOI: 10.1128/jcm.44.3.1087-1089.2006
Kassaza, K., Operario, D.J., Nyehangane, D., Coffey, K.C., Namugosa, M., Turkheimer, L., Ojuka, P., Orikiriza, P., Mwanga-Amumpaire, J., Byarugaba, F., Bazira, J., Guler, J. L., Moore, C.C., and Boum, Y. (2017). Detection of Plasmodium species by high-resolution melt analysis of DNA from blood smears acquired in Southwestern Uganda. Journal of Clinical Microbiology, 56(1), 1–9. DOI: 10.1128/jcm.01060-17
Kil, E.-J., Kim, S., Lee, Y.-J., Kang, E.-H., Lee, M., Cho, S.-H., Kim, M.-K., Lee, K.-Y., Heo, N.-Y., Choi, H.-S., Kwon, S.-T., and Lee, S. (2015). Advanced loop-mediated isothermal amplification method for sensitive and specific detection of Tomato chlorosis virus using an uracil DNA glycosylase to control carry-over contamination. Journal of Virological Methods, 213, 68–74. DOI: 10.1016/j.jviromet.2014.10.020
Lau, Y.L., Palaeya, V., Anthony, C.N., Fong, M.Y., Chang, P.Y., Mahmud, R., and Lai, M.Y. (2015). Comparison of Three Molecular Methods for the Detection and Speciation of Five Human Plasmodium Species. The American Journal of Tropical Medicine and Hygiene, 92(1), 28–33. DOI: 10.4269/ajtmh.14-0309
Longo, M.C., Berninger, M.S., and Hartley, J.L. (1990). Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene, 93(1), 125–128. DOI: 10.1016/0378-1119(90)90145-h
Lucchi, N.W., Ljolje, D., Silva-Flannery, L., and Udhayakumar, V. (2016). Use of malachite green-loop mediated isothermal amplification for detection of Plasmodium spp. parasites. PLOS ONE, 11(3), e0151437. DOI: 10.1371/journal.pone.0151437
Lucchi, N.W., Ndiaye, D., Britton, S., and Udhayakumar, V. (2018). Expanding the malaria molecular diagnostic options: opportunities and challenges for loop-mediated isothermal amplification tests for malaria control and elimination. Expert Review of Molecular Diagnostics, 18(2), 195–203. DOI: 10.1080/14737159.2018.1431529
Martins, T.B., Hillyard, D.R., Litwin, C.M., Taggart, E.W., Jaskowski, T.D., and Hill, H.R. (2000). Evaluation of a PCR Probe Capture Assay for the Detection of Toxoplasma gondii. American Journal of Clinical Pathology, 113(5), 714–721. DOI: 10.1309/2mwt-x9ph-v43m-v3mq
Mfuh, K.O., Achonduh-Atijegbe, O.A., Bekindaka, O.N., Esemu, L.F., Mbakop, C.D., Gandhi, K., Leke, R.G.F., Taylor, D.W., and Nerurkar, V.R. (2019). A comparison of thick-film microscopy, rapid diagnostic test, and polymerase chain reaction for accurate diagnosis of Plasmodium falciparum malaria. Malaria Journal, 18(1), 1–8. DOI: 10.1186/s12936-019-2711-4
Montiel, J., Carbal, L.F., Tobón-Castaño, A., Vásquez, G.M., Fisher, M.L., and Londono-Rentería, B. (2020a). IgG antibody response against Anopheles salivary gland proteins in asymptomatic Plasmodium infections in Narino, Colombia. Malaria Journal, 19(1), 1–13. DOI: 10.1186/s12936-020-3128-9
Montiel, J., Zuluaga, L.M., Aguirre, D.C., Segura, C., Tobon-Castaño, A., and Vásquez, A.M. (2020b). Microscopic and submicroscopic Plasmodium infections in indigenous and non-indigenous communities in Colombia. Malaria Journal, 19(1), 1–12. DOI: 10.1186/s12936-020-03226-4
Mosbaugh, D.W. (1988). Purification and characterization of porcine liver DNA polymerase γ: utilitzation of dUTP and dTTP duringin vitroDNA synthesis. Nucleic Acids Research, 16(12), 5645–5659. DOI: 10.1093/nar/16.12.5645
Nazaré, P.G., da Silva, F., Ferreira, M.C., Fortes, F., Rojas, L.R., and Dimbu, P.R. (Eds.). (2014). Evaluation of the quality of malaria diagnosis by optical microscopy in provincial laboratories of the Republic of Angola. Revista Cubana de Medicina Tropical, 66(2), 191–201. https://www.medigraphic.com/pdfs/revcubmedtro/cmt-2014/cmt142d.pdf
Pang, J., Modlin, J., and Yolken, R. (1992). Use of modified nucleotides and uracil-DNA glycosylase (UNG) for the control of contamination in the PCR-based amplification of RNA. Molecular and Cellular Probes, 6(3), 251–256. DOI: 10.1016/0890-8508(92)90024-r
Pava, Z., Murillo, C., Echeverry, D.F., and Díaz, G. (2010). Large variation in detection of Histidine-rich protein 2 in Plasmodium falciparum isolates from Colombia. The American Journal of Tropical Medicine and Hygiene, 83(4), 834–837. DOI: 10.4269/ajtmh.2010.10-0075
Pöschl, B., Thekisoe, O., Chutipongvivate, S., Panagiotis, K., and Waneesorn, J. (2010). Comparative diagnosis of malaria infections by microscopy, nested PCR, and LAMP in Northern Thailand. The American Journal of Tropical Medicine and Hygiene, 83(1), 56–60. DOI: 10.4269/ajtmh.2010.09-0630
Schormann, N., Ricciardi, R., and Chattopadhyay, D. (2014). Uracil-DNA glycosylases-structural and functional perspectives on an essential family of DNA repair enzymes. Protein Science, 23(12), 1667–1685. DOI: 10.1002/pro.2554
Singh, B., Snounou, G., Abdullah, M.S., Rahman, H.A., Bobogare, A., and Cox-Singh, J. (1999). A genus- and species-specific nested polymerase chain reaction malaria detection assay for epidemiologic studies. The American Journal of Tropical Medicine and Hygiene, 60(4), 687–692. DOI: 10.4269/ajtmh.1999.60.687
Snounou, G. and White, N.J. (2004). The co-existence of Plasmodium: Sidelights from falciparum and vivax malaria in Thailand. Trends in Parasitology, 20(7), 333–339. DOI: 10.1016/j.pt.2004.05.004
Tang, Y., Chen, H., and Diao, Y. (2016). Advanced uracil DNA glycosylase-supplemented real-time reverse transcription loop-mediated isothermal amplification (UDG-rRT-LAMP) method for universal and specific detection of Tembusu virus. Scientific Reports, 6(1), 1–12. DOI: 10.1038/srep27605
Vallejo, A.F., Chaparro, P.E., Benavides, Y., Álvarez, Á., Quintero, J.P., Padilla, J., Arévalo-Herrera, M., and Herrera, S. (2015). High prevalence of sub-microscopic infections in Colombia. Malaria Journal, 14(1), 1–7. DOI: 10.1186/s12936-015-0711-6
Vásquez, A.M., Medina, A.C., Tobón-Castaño, A., Posada, M., Vélez, G.J., Campillo, A., González, I.J., and Ding, X. (2018). Performance of a highly sensitive rapid diagnostic test (HS-RDT) for detecting malaria in peripheral and placental blood samples from pregnant women in Colombia. PLOS ONE, 13(8), e0201769. DOI: 10.1371/journal.pone.0201769
Wang, X., Chen, T., Kim, D., and Piomelli, S. (1992). Prevention of carryover contamination in the detection of βS and βC genes by polymerase chain reaction. American Journal of Hematology, 40(2), 146–148. DOI: 10.1002/ajh.2830400212
World Health Organization. (2019). World malaria report 2019. https://www.who.int/publications/i/item/world-malaria-report-2019
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Actualidades Biológicas
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors exclusively authorize the Actualidades Biológicas journal to edit and publish the submitted manuscript if its publication is recommended and accepted, without this representing any cost to the Journal or the University of Antioquia.
All the ideas and opinions contained in the articles are sole responsibility of the authors. The total content of the issues or supplements of the journal is protected under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, so they cannot be used for commercial purposes, but for educational purposes. However, please mention the Actualidades Biológicas journal as a source and send a copy of the publication in which the content was reproduced.