Incorporación de Uracilo ADN glicosilasa / dUTPs en la reacción de PCR anidada para detectar Plasmodium falciparum y Plasmodium vivax: una estrategia para reducir el riesgo de contaminación

Autores/as

DOI:

https://doi.org/10.17533/udea.acbi.v42n113a06

Palabras clave:

Contaminación de ADN, Malaria, Plasmodium sp., Reacción en Cadena de la Polimerasa, Uridina trifosfato

Resumen

La reacción en cadena de la polimerasa (PCR) se emplea en investigación y como prueba diagnóstica para confirmar la infección malárica en muestras clínicas. Por ser un método con una sensibilidad cercana a 100%, es susceptible a la contaminación por amplicones, cuando se procesa un gran volumen de muestras, aumentando el riesgo de falsos positivos. Este estudio evaluó la incorporación del sistema uracilo ADN glicosilasa (UDG)-dUTPs en la reacción de PCR anidada (nPCR) para Plasmodium falciparum y Plasmodium vivax, como estrategia para prevenir la contaminación por amplicones en nuevas reacciones. Se empleó ADN de la cepa 3D7 de P. falciparum y una muestra clínica con infección confirmada por P. vivax. Se evaluó el efecto de reemplazar dTTPs por dUTPs en la reacción de nPCR y se verificó su efecto en el límite de detección. Se evaluó la acción degradante de la enzima UDG en reacciones de PCR contaminadas artificialmente con amplicones. Se cuantificó el ADN contaminante que fue capaz de degradar una unidad de UDG en este sistema. La sustitución de dTTPs por dUTPs no afectó la función de la Taq polimerasa, sin embargo, se observó una ligera disminución en la sensibilidad analítica de la nPCR cuando se incorporaron dUTPs. En reacciones contaminadas, la UDG fue capaz de degradar exclusivamente los amplicones contaminantes, sin afectar la amplificación del ADN nativo. Una unidad de UDG logró degradar completamente hasta 6 pg/µl de ADN contaminante. El sistema UDG-dUTPs puede prevenir la contaminación para mejorar el diagnóstico molecular en malaria.

|Resumen
= 1535 veces | PDF
= 524 veces| | HTML
= 143 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Carlos Alejandro Herrera-Sandoval, Universidad de Antioquia

Grupo Malaria, Universidad de Antioquia, Medellín, Colombia. Estudiante de Maestría, Corporación de Ciencias Básicas Biomédicas, Universidad de Antioquia, Colombia.

Tatiana María Lopera-Mesa, Universidad de Antioquia

Grupo Malaria, Universidad de Antioquia, Medellín, Colombia. Docente e investigadora, Facultad de Medicina, Universidad de Antioquia, Colombia.

Citas

Aslanzadeh, J. (2004). Preventing PCR amplification carryover contamination in a clinical laboratory. Annals of Clinical and Laboratory Science, 34(4), 389–396. http://www.annclinlabsci.org/content/34/4/389.long

Bacich, D.J., Sobek, K.M., Cummings, J.L., Atwood, A.A., and O’Keefe, D.S. (2011). False negative results from using common PCR reagents. BMC Research Notes, 4(1), 1–7. DOI: 10.1186/1756-0500-4-457

Berzosa, P., de Lucio, A., Romay-Barja, M., Herrador, Z., González, V., García, L., Fernández-Martínez, A., Santana-Morales, M., Ncogo, P., Valladares, B., Riloha, M., and Benito, A. (2018). Comparison of three diagnostic methods (microscopy, RDT, and PCR) for the detection of malaria parasites in representative samples from Equatorial Guinea. Malaria Journal, 17(1), 1–12. DOI: 10.1186/s12936-018-2481-4

Bessman, M.J., Lehman, I.R., Adler, J., Zimmerman, S.B., Simms, E.S., and Kornberg, A. (1958). Enzymatic synthesis of deoxyribonucleic acid. III. The incorporation of pyrimidine and purine analogues into deoxyribonucleic acid. Proceedings of the National Academy of Sciences, 44(7), 633–640. DOI: 10.1073/pnas.44.7.633

Borst, A., Box, A.T.A., and Fluit, A.C. (2004). False-positive results and contamination in nucleic acid amplification assays: Suggestions for a prevent and destroy strategy. European Journal of Clinical Microbiology & Infectious Diseases, 23(4), 289–299. DOI: 10.1007/s10096-004-1100-1

Cortés, L.J. y Guerra, Á.P. (2020). Análisis de concordancia de tres pruebas para el diagnóstico de malaria en la población sintomática de los municipios endémicos de Colombia. Biomédica, 40(1), 117–128. DOI: 10.7705/biomedica.4893

Fallahi, S., Moosavi, S.F., Karimi, A., Chegeni, A.S., Saki, M., Namdari, P., Rashno, M.M., Varzi, A.M., Tarrahi, M.J., and Almasian, M. (2018). An advanced uracil DNA glycosylase-supplemented loop-mediated isothermal amplification (UDG-LAMP) technique used in the sensitive and specific detection of Cryptosporidium parvum, Cryptosporidium hominis, and Cryptosporidium meleagridis in AIDS patients. Diagnostic Microbiology and Infectious Disease, 91(1), 6–12. DOI: 10.1016/j.diagmicrobio.2017.12.017

Gamboa, D., Ho, M.-F., Bendezu, J., Torres, K., Chiodini, P.L., Barnwell, J.W., Incardona, S., Perkins, M., Bell, D., McCarthy, J., and Cheng, Q. (2010). A large proportion of P. falciparum isolates in the Amazon Region of Peru lack pfhrp2 and pfhrp3: Implications for malaria rapid diagnostic tests. PLoS ONE, 5(1), e8091. DOI: 10.1371/journal.pone.0008091

Grignard, L., Nolder, D., Sepúlveda, N., Berhane, A., Mihreteab, S., Kaaya, R., Phelan, J., Moser, K., van Schalkwyk, D.A., Campino, S., Parr, J.B., Juliano, J.J., Chiodini, P., Cunningham, J., Sutherland, C.J., Drakeley, C., and Beshir, K.B. (2020). A novel multiplex qPCR assay for detection of Plasmodium falciparum with histidine-rich protein 2 and 3 (pfhrp2 and pfhrp3) deletions in polyclonal infections. EBioMedicine, 55, 102757. DOI: 10.1016/j.ebiom.2020.102757

Hsieh, K., Mage, P.L., Csordas, A.T., Eisenstein, M., and Tom Soh, H. (2014). Simultaneous elimination of carryover contamination and detection of DNA with uracil-DNA-glycosylase-supplemented loop-mediated isothermal amplification (UDG-LAMP). Chemical Communications, 50(28), 3747. DOI: 10.1039/c4cc00540f

Instituto Nacional de Salud. (2019). Boletín epidemiológico semanal 52 de 2019. Boletín Epidemiológico Semanal, 1–28. DOI: 10.33610/23576189.2019.52

Instituto Nacional de Salud. (2020). Informe de Evento, Malaria. Periodo Epidemiológico VII, Colombia 2020. https://www.ins.gov.co/buscador-eventos/Informesdeevento/MALARIA%20PE%20VII%202020.pdf

Johnston, S.P., Pieniazek, N.J., Xayavong, M.V., Slemenda, S.B., Wilkins, P.P., and da Silva, A.J. (2006). PCR as a confirmatory technique for laboratory diagnosis of malaria. Journal of Clinical Microbiology, 44(3), 1087–1089. DOI: 10.1128/jcm.44.3.1087-1089.2006

Kassaza, K., Operario, D.J., Nyehangane, D., Coffey, K.C., Namugosa, M., Turkheimer, L., Ojuka, P., Orikiriza, P., Mwanga-Amumpaire, J., Byarugaba, F., Bazira, J., Guler, J. L., Moore, C.C., and Boum, Y. (2017). Detection of Plasmodium species by high-resolution melt analysis of DNA from blood smears acquired in Southwestern Uganda. Journal of Clinical Microbiology, 56(1), 1–9. DOI: 10.1128/jcm.01060-17

Kil, E.-J., Kim, S., Lee, Y.-J., Kang, E.-H., Lee, M., Cho, S.-H., Kim, M.-K., Lee, K.-Y., Heo, N.-Y., Choi, H.-S., Kwon, S.-T., and Lee, S. (2015). Advanced loop-mediated isothermal amplification method for sensitive and specific detection of Tomato chlorosis virus using an uracil DNA glycosylase to control carry-over contamination. Journal of Virological Methods, 213, 68–74. DOI: 10.1016/j.jviromet.2014.10.020

Lau, Y.L., Palaeya, V., Anthony, C.N., Fong, M.Y., Chang, P.Y., Mahmud, R., and Lai, M.Y. (2015). Comparison of Three Molecular Methods for the Detection and Speciation of Five Human Plasmodium Species. The American Journal of Tropical Medicine and Hygiene, 92(1), 28–33. DOI: 10.4269/ajtmh.14-0309

Longo, M.C., Berninger, M.S., and Hartley, J.L. (1990). Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene, 93(1), 125–128. DOI: 10.1016/0378-1119(90)90145-h

Lucchi, N.W., Ljolje, D., Silva-Flannery, L., and Udhayakumar, V. (2016). Use of malachite green-loop mediated isothermal amplification for detection of Plasmodium spp. parasites. PLOS ONE, 11(3), e0151437. DOI: 10.1371/journal.pone.0151437

Lucchi, N.W., Ndiaye, D., Britton, S., and Udhayakumar, V. (2018). Expanding the malaria molecular diagnostic options: opportunities and challenges for loop-mediated isothermal amplification tests for malaria control and elimination. Expert Review of Molecular Diagnostics, 18(2), 195–203. DOI: 10.1080/14737159.2018.1431529

Martins, T.B., Hillyard, D.R., Litwin, C.M., Taggart, E.W., Jaskowski, T.D., and Hill, H.R. (2000). Evaluation of a PCR Probe Capture Assay for the Detection of Toxoplasma gondii. American Journal of Clinical Pathology, 113(5), 714–721. DOI: 10.1309/2mwt-x9ph-v43m-v3mq

Mfuh, K.O., Achonduh-Atijegbe, O.A., Bekindaka, O.N., Esemu, L.F., Mbakop, C.D., Gandhi, K., Leke, R.G.F., Taylor, D.W., and Nerurkar, V.R. (2019). A comparison of thick-film microscopy, rapid diagnostic test, and polymerase chain reaction for accurate diagnosis of Plasmodium falciparum malaria. Malaria Journal, 18(1), 1–8. DOI: 10.1186/s12936-019-2711-4

Montiel, J., Carbal, L.F., Tobón-Castaño, A., Vásquez, G.M., Fisher, M.L., and Londono-Rentería, B. (2020a). IgG antibody response against Anopheles salivary gland proteins in asymptomatic Plasmodium infections in Narino, Colombia. Malaria Journal, 19(1), 1–13. DOI: 10.1186/s12936-020-3128-9

Montiel, J., Zuluaga, L.M., Aguirre, D.C., Segura, C., Tobon-Castaño, A., and Vásquez, A.M. (2020b). Microscopic and submicroscopic Plasmodium infections in indigenous and non-indigenous communities in Colombia. Malaria Journal, 19(1), 1–12. DOI: 10.1186/s12936-020-03226-4

Mosbaugh, D.W. (1988). Purification and characterization of porcine liver DNA polymerase γ: utilitzation of dUTP and dTTP duringin vitroDNA synthesis. Nucleic Acids Research, 16(12), 5645–5659. DOI: 10.1093/nar/16.12.5645

Nazaré, P.G., da Silva, F., Ferreira, M.C., Fortes, F., Rojas, L.R., and Dimbu, P.R. (Eds.). (2014). Evaluation of the quality of malaria diagnosis by optical microscopy in provincial laboratories of the Republic of Angola. Revista Cubana de Medicina Tropical, 66(2), 191–201. https://www.medigraphic.com/pdfs/revcubmedtro/cmt-2014/cmt142d.pdf

Pang, J., Modlin, J., and Yolken, R. (1992). Use of modified nucleotides and uracil-DNA glycosylase (UNG) for the control of contamination in the PCR-based amplification of RNA. Molecular and Cellular Probes, 6(3), 251–256. DOI: 10.1016/0890-8508(92)90024-r

Pava, Z., Murillo, C., Echeverry, D.F., and Díaz, G. (2010). Large variation in detection of Histidine-rich protein 2 in Plasmodium falciparum isolates from Colombia. The American Journal of Tropical Medicine and Hygiene, 83(4), 834–837. DOI: 10.4269/ajtmh.2010.10-0075

Pöschl, B., Thekisoe, O., Chutipongvivate, S., Panagiotis, K., and Waneesorn, J. (2010). Comparative diagnosis of malaria infections by microscopy, nested PCR, and LAMP in Northern Thailand. The American Journal of Tropical Medicine and Hygiene, 83(1), 56–60. DOI: 10.4269/ajtmh.2010.09-0630

Schormann, N., Ricciardi, R., and Chattopadhyay, D. (2014). Uracil-DNA glycosylases-structural and functional perspectives on an essential family of DNA repair enzymes. Protein Science, 23(12), 1667–1685. DOI: 10.1002/pro.2554

Singh, B., Snounou, G., Abdullah, M.S., Rahman, H.A., Bobogare, A., and Cox-Singh, J. (1999). A genus- and species-specific nested polymerase chain reaction malaria detection assay for epidemiologic studies. The American Journal of Tropical Medicine and Hygiene, 60(4), 687–692. DOI: 10.4269/ajtmh.1999.60.687

Snounou, G. and White, N.J. (2004). The co-existence of Plasmodium: Sidelights from falciparum and vivax malaria in Thailand. Trends in Parasitology, 20(7), 333–339. DOI: 10.1016/j.pt.2004.05.004

Tang, Y., Chen, H., and Diao, Y. (2016). Advanced uracil DNA glycosylase-supplemented real-time reverse transcription loop-mediated isothermal amplification (UDG-rRT-LAMP) method for universal and specific detection of Tembusu virus. Scientific Reports, 6(1), 1–12. DOI: 10.1038/srep27605

Vallejo, A.F., Chaparro, P.E., Benavides, Y., Álvarez, Á., Quintero, J.P., Padilla, J., Arévalo-Herrera, M., and Herrera, S. (2015). High prevalence of sub-microscopic infections in Colombia. Malaria Journal, 14(1), 1–7. DOI: 10.1186/s12936-015-0711-6

Vásquez, A.M., Medina, A.C., Tobón-Castaño, A., Posada, M., Vélez, G.J., Campillo, A., González, I.J., and Ding, X. (2018). Performance of a highly sensitive rapid diagnostic test (HS-RDT) for detecting malaria in peripheral and placental blood samples from pregnant women in Colombia. PLOS ONE, 13(8), e0201769. DOI: 10.1371/journal.pone.0201769

Wang, X., Chen, T., Kim, D., and Piomelli, S. (1992). Prevention of carryover contamination in the detection of βS and βC genes by polymerase chain reaction. American Journal of Hematology, 40(2), 146–148. DOI: 10.1002/ajh.2830400212

World Health Organization. (2019). World malaria report 2019. https://www.who.int/publications/i/item/world-malaria-report-2019

Descargas

Publicado

2020-10-26

Cómo citar

Herrera-Sandoval, C. A., & Lopera-Mesa, T. M. (2020). Incorporación de Uracilo ADN glicosilasa / dUTPs en la reacción de PCR anidada para detectar <i>Plasmodium falciparum</i> y <i>Plasmodium vivax</i>: una estrategia para reducir el riesgo de contaminación. Actualidades Biológicas, 42(113), 1–12. https://doi.org/10.17533/udea.acbi.v42n113a06

Número

Sección

Artículos completos