Uso de los flavonoides en modelos experimentales de glioblastoma multiforme
DOI:
https://doi.org/10.17533/udea.acbi/v47n123a09Palabras clave:
Cultivo celular, Fitoterapia, Glioblastoma multiforme, flavonoides, Modelos in vitro, Terapia celularResumen
El Glioblastoma Multiforme (GBM) representa al tumor con mayor malignidad e incidencia y prevalencia de aquellos que se desarrollan a nivel de Sistema Nervioso Central (CNS). El uso de flavonoides ha venido tomando fuerza de forma alternativa y coadyuvante para contrarrestar la aparición y el desarrollo de diversos tipos de cáncer, dentro de ellos el GBM. El objetivo de esta revisión fue analizar el uso de flavonoides de diferentes fuentes vegetales en modelos experimentales de GBM en una ventana de búsqueda de diez años (2013-2023). Se revisaron cincuenta y un artículos dentro de los que se encuentran artículos originales y revisiones bibliográficas. En conclusión, los flavonoides han sido probados en diferentes modelos in vitro de GBM, disminuyendo la proliferación y la angiogénesis, activando vías de señalización y redireccionando la actividad celular a vías alternas que evoquen apoptosis y reparación celular.
Descargas
Citas
Ahmed, Q. U., Ali, A., Mukhtar, S., Alsharif, M. A., Parveen, H. & Sabere, A. (2020). Medicinal potential of isoflavonoids: Polyphenols that may cure diabetes. Molecules, 25(23), 5491. https://doi.org/10.3390/molecules25235491
Anson, D. A., Wilcox, R. M., Huseman, E., Stump, T. A., Paris, R. L. & Darkwah, B. O. (2018). Luteolin decreases epidermal growth factor receptor-mediated cell proliferation and induces apoptosis in glioblastoma cell lines. Basic & Clinical Pharmacology & Toxicology, 123, 678–686. https://doi.org/10.3389/fphar.2022.952169
Babaei, F., Mirzababaei, M. & Nassiri-As, M. (2013). Quercetin in food: Possible mechanisms of its effect on memory. Journal of Food Science, 83(9), 2280-2287. https://doi.org/10.1111/1750-3841.14317
Baradaran-Rahimi, V., Mousavi, S. H., Haghighi, S., Soheili-Far, S. & Askari, V. R. (2019). Cytotoxicity and apoptogenic properties of the standardized extract of Portulaca oleracea on glioblastoma multiforme cancer cell line (U-87): A mechanistic study. EXCLI Journal, 18, 165–186. https://doi.org/10.17179/excli2019-1063
Batash, R., Asna, N., Shaffer, P., Francis, N. & Schaffer, M. (2017). Glioblastoma multiforme, diagnosis and treatment; recent literature review. Current Medicinal Chemistry, 24, 3002-3009. https://doi.org/10.2174/0929867324666170516123206
Bispo da Silva, A., Cerqueira-Coelho, P. L., Oliveira, M. N., Oliveira, J. L., Oliveira Amparo, J. A., Costa da Silva, K., Soares, J. R. P., Pitanga, B. P. S., Souza, C. S., Lopes, G. P. F., Amaral da Silva, V. D., Dias Costa, M. F., Junier, M. P., Chneiweiss, H., Moura-Neto, V. & Lima Costa, S. (2020). The flavonoid rutin and its aglycone quercetin modulate the microglia inflammatory profile improving antiglioma activity. Brain, Behavior, and Immunity, 85, 170–185. https://doi.org/10.1016/j.bbi.2019.05.003
Chen, L. J., Hsu, T. C., Yeh, P. J., Yow, J. L., Chang, C. L., Lin, C. H. & Tzang, B. S. (2021). Differential effects of Wedelia chinensis on human glioblastoma multiforme cells. Integrative Cancer Therapies, 20, 15347354211000119. https://doi.org/10.1177/15347354211000119.
Chong-Tuesta, R. G. (2019). Alimentos ricos en flavonoides y sus beneficios a la salud [Tesis de licenciatura, Universidad Nacional de San Martín]. https://repositorio.unsm.edu.pe/handle/11458/3564
Chunhua, Y., Sushma, R. G., Rao, M., Subrahmanyam, V., Michelle, D. R. & Ritu, A. (2015). Synergistic interactions among flavonoids and acetogenins in Graviola (Annona muricata) leaves confer protection against prostate cancer. Carcinogenesis, 36(6), 656–665. https://doi.org/10.1093/carcin/bgv046
Colombo, M., Figueiró, F., De Fraga-Dias, A., Teixeira, H. F., Battastini, A. & Koester, L. S. (2018). Kaempferol-loaded mucoadhesive nanoemulsion for intranasal administration reduces glioma growth in vitro. International Journal of Pharmacology, 543(1-2), 214–223. https://doi.org/10.1016/j.ijpharm.2018.03.055
De Azambuja Borges, C. R. L., Silva, N. O., Rodrigues, M. R., Marinho, M. A. G., de Oliveira, F. S., Cassiana, M., et al. (2019). Dimiristoylphosphatidylcholine/genistein molecular interactions: A physico-chemical approach to anti-glioma drug delivery systems. Chemistry and Physics of Lipids, 225, 104828. https://doi.org/10.1016/j.chemphyslip.2019.104828
Hajimehdipoor, H., Shahrestani, R. & Shekarchi, M. (2014). Investigating the synergistic antioxidant effects of some flavonoid and phenolic compounds. Research Journal of Pharmacognosy, 1(3), 35–40. https://doi.org/10.12691/rjp-1-3-1
Hanif, F., Muzaffar, K., Kahkashan, P., Malhi, M. S. & Simjee, S. U. (2017). Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pacific Journal of Cancer Prevention, 18(1), 3-9. https://doi.org/10.22034/APJCP.2017.18.1.3
Imran, M., Rauf, A., Abu-Izneid, T., Nadeem, M., Shariati, M. A., Khan, I. A., … Mobarak, M. S. (2019). Luteolin, a flavonoid, as an anticancer agent: A review. Biomedicine & Pharmacotherapy, 112, 108612. https://doi.org/10.1016/j.biopha.2019.108612
Jakubowicz-Gil, J., Langner, E., Bądziul, D., Wertel, I. & Rzeski, W. (2013). Apoptosis induction in human glioblastoma multiforme T98G cells upon temozolomide and quercetin treatment. Tumor Biology, 34, 2367–2378. https://doi.org/10.1007/s13277-013-0785-0
Jiang, M., Zhu, M., Wang, L. & Yu, S. (2019). Anti-tumor effects and associated molecular mechanisms of myricetin. Biomedicine & Pharmacotherapy, 120, 1-10. https://doi.org/10.1016/j.biopha.2019.109506
Kariagina, A. & Doseff, A. I. (2022). Anti-inflammatory mechanisms of dietary flavones: Tapping into nature to control chronic inflammation in obesity and cancer. International Journal of Molecular Sciences, 23(24), 15753. https://doi.org/10.3390/ijms232415753
Kumar, S. & Pandey, A. B. (2013). Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal, 1, 17. https://doi.org/10.1155/2013/162750
Lee, C. F., Yang, J. S., Tsai, F. J., Chiang, N. N., Lu, C. C., Huang, Y. S., et al. (2016). Kaempferol induces ATM/p53-mediated death receptor and mitochondrial apoptosis in human umbilical vein endothelial cells. International Journal of Oncology, 48(5), 2007–2014. https://doi.org/10.3892/ijo.2016.3420
Liu, X., Liu, K., Qin, J., Hao, L., Li, X., Liu, X., et al. (2015). C/EBPβ promotes angiogenesis through secretion of IL-6, which is inhibited by genistein, in EGFRvIII-positive glioblastoma. International Journal of Cancer, 136, 2524–2534. https://doi.org/10.1002/ijc.29319
Liu, X., Wang, Q., Liu, B., Zheng, X., Li, P., Zhao, T., et al. (2021). Genistein inhibits radiation-induced invasion and migration of glioblastoma cells by blocking the DNA-PKcs/Akt2/Rac1 signaling pathway. Radiotherapy and Oncology, 155, 93-104. https://doi.org/10.1016/j.radonc.2020.10.026
Mahmoud, A. B., Ajina, R., Aref, S., Darwish, M., Alsayb, M., Taher, M., et al. (2022). Advances in immunotherapy for glioblastoma multiforme. Frontiers in Immunology, 13, 944452. https://doi.org/10.3389/fimmu.2022.944452
Messaoudi, K., Clavreul, A. & Lagarce, F. (2015). Toward an effective strategy in glioblastoma treatment. Part I: Resistance mechanisms and strategies to overcome resistance of glioblastoma to temozolomide. Drug Discovery Today, 20(7), 899-905. https://doi.org/10.1016/j.drudis.2015.02.011
Nair, B., Anto, R. J. M. S. & Nath, L. R. (2020). Kaempferol-mediated sensitization enhances chemotherapeutic efficacy of sorafenib against hepatocellular carcinoma: An in silico and in vitro approach. Advanced Pharmaceutical Bulletin, 10(3), 472–476. https://doi.org/10.34172/apb.2020.058
Neri-Numa, I. A., Silvano-Arruda, E., Vilar-Geraldi, M., Maróstica-Júnior, M. R. & Pastore, C. M. (2020). Natural prebiotic carbohydrates, carotenoids and flavonoids as ingredients in food systems. Current Opinion in Food Science, 33, 98-107. https://doi.org/10.1016/j.cofs.2020.03.004
Ozdemir-Kainak, E., Qutub, A. & Yesil-Celiktas, O. (2018). Advances in glioblastoma multiforme treatment: New models for nanoparticle therapy. Frontiers in Physiology, 9, 170. https://doi.org/10.3389/fphys.2018.00170
Pearson, J. & Regad, T. (2017). Targeting cellular pathways in glioblastoma multiforme. Signal Transduction and Targeted Therapy, 2, 17040. https://doi.org/10.1038/sigtrans.2017.40
Ponte, L. G. S., Pavan, I. C. B., Mancini, M. C. S., Da Silva, L. G. S., Morelli, A. P. & Severino, M. B. (2021). The hallmarks of flavonoids in cancer. Molecules, 26(7), 2029. https://doi.org/10.3390/molecules26072029
Ramawat, K. G. & Mérillon, J. M. (Eds.). (2020). Co-evolution of secondary metabolites. In Natural Products (pp. 1821–1827). Springer. https://doi.org/10.1007/978-3-319-92722-0_57
Ramezani, S., Vousooghi, N., Joghataei, M. T. & Chabok, S. Y. (2019). The role of kinase signaling in resistance to bevacizumab therapy for glioblastoma multiforme. Cancer Biotherapy and Radiopharmaceuticals, 34(6), 345–354. https://doi.org/10.1089/cbr.2018.2651
Shan, X., Cheng, J., Chen, K. L., Liu, Y. M. & Juan, L. (2017). Comparison of lipoxygenase, cyclooxygenase, xanthine oxidase inhibitory effects and cytotoxic activities of selected flavonoids. DEStech Transactions on Environment, Energy and Earth Sciences. https://doi.org/10.12783/dteees/gmee2017/16624
Shendge, A. K., Chaudhuri, D. & Mandal, N. (2021). The natural flavones, acacetin and apigenin, induce Cdk-cyclin mediated G2/M phase arrest and trigger ROS-mediated apoptosis in glioblastoma cells. Molecular Biology Reports, 48(1), 539–549. https://doi.org/10.1007/s11033-020-06087-x
Silva dos Santos, J., Gonçalves-Cirino, J. P., De Oliveira-Carvalho, P. & Ortega, M. M. (2021). The pharmacological action of kaempferol in central nervous system diseases: A review. Frontiers in Pharmacology, 11, 1–15. https://doi.org/10.3389/fphar.2020.565700
Ströbele, S., Schneider, M., Shneele, L., Siegelin, M. D., Nonnenmacher, L., Shaoxia, Z. & Debatin, K. M. (2015). A potential role for the inhibition of PI3K signaling in glioblastoma therapy. PLOS ONE, 10(7), e0134770. https://doi.org/10.1371/journal.pone.0131670
Suhail, M., Tarique, M., Tabrez, S., Zughaibi, T. A. & Rehan, M. (2023). Synergistic inhibition of glioblastoma multiforme through an in-silico analysis of luteolin and ferulic acid derived from Angelica sinensis and Cannabis sativa: Advancements in computational therapeutics. PLOS ONE, 18(11), e0293666. https://doi.org/10.1371/journal.pone.0293666
Sung, B., Chung, H. Y. & Kim, N. D. (2016). Role of apigenin in cancer prevention via the induction of apoptosis and autophagy. Journal of Cancer Prevention, 21(4), 216–226. https://doi.org/10.15430/JCP.2016.21.4.216
Taylor, M. A., Khathayer, F. & Ray, S. K. (2019). Quercetin and sodium butyrate synergistically increase apoptosis in rat C6 and human T98G glioblastoma cells through inhibition of autophagy. Neurochemical Research, 44(7), 1715–1725. https://doi.org/10.1007/s11064-019-02802-8
Ullah, A., Munir, S., Badshah, S. L., Khan, N., Ghani, L., Poulson, B. G. & Jaremko, M. (2020). Important flavonoids and their role as a therapeutic agent. Molecules, 25(22), 5243. https://doi.org/10.3390/molecules25225243
Verdugo, E., Puerto, I. & Medina, M. Á. (2022). An update on the molecular biology of glioblastoma, with clinical implications and progress in its treatment. Cancer Communications (Lond), 42(11), 1083–1111. https://doi.org/10.1002/cac2.12361
Villela, A., Van Vuuren, M. S., Willemen, H. M., Derksen, G. C. & Van Beek, T. A. (2019). Photostability of a flavonoid dye in the presence of aluminium ions. Dyes and Pigments, 162, 222–231. https://doi.org/10.1016/j.dyepig.2018.10.021
Wang, D., Wang, Z., Dai, X., Zhang, L. & Li, M. (2021). Apigenin and temozolomide synergistically inhibit glioma growth through the PI3K/AKT pathway. Cancer Biotherapy & Radiopharmaceuticals, 39(2), 125–132. https://doi.org/10.1089/cbr.2020.4283
Wang, G., Wang, J. J., Tang, X. J., Du, L. & Li, F. (2016). In vitro and in vivo evaluation of functionalized chitosan-pluronic micelles loaded with myricetin on glioblastoma cancer. Nanomedicine: Nanotechnology, Biology and Medicine, 12(5), 1263–1278. https://doi.org/10.1016/j.nano.2016.02.004
Wang, J., Qi, Q., Zhou, W., Feng, Z., Huang, B., Chen, A. & Wang, J. (2018). Inhibition of glioma growth by flavokawain B is mediated through endoplasmic reticulum stress-induced autophagy. Autophagy, 14(11), 2007–2022. https://doi.org/10.1080/15548627.2018.1501133
Wang, M., Firrman, J., Liu, L. & Yam, K. (2019). A review on flavonoid apigenin: Dietary intake, ADME, antimicrobial effects, and interactions with human gut microbiota. Biomedical Research International, 2019(9), 1–18. https://doi.org/10.1155/2019/7010467
Wang, Q., Wang, H., Jia, Y., Ding, H., Zhang, L. & Pan, H. (2017). Luteolin reduces migration of human glioblastoma cell lines via inhibition of the p-IGF-1R/PI3K/AKT/mTOR signaling pathway. Oncology Letters, 14, 3545–3551. https://doi.org/10.3892/ol.2017.6643
Waugh, M. G. (2016). Chromosomal instability and phosphoinositide pathway gene signatures in glioblastoma multiforme. Molecular Neurobiology, 53(1), 621–630. https://doi.org/10.1007/s12035-014-9034-9
Wong, S. C., Kamarudin, M. N. A. & Naidu, R. (2023). Anticancer mechanism of flavonoids on high-grade adult-type diffuse gliomas. Nutrients, 15(4), 797. https://doi.org/10.3390/nu15040797
Yang, W., Xu, T., Garzon-Muvdi, T., Jiang, C., Huang, J. & Chaichana, K. (2017). Survival of ventricular and periventricular high-grade gliomas: A Surveillance, Epidemiology, and End Results program-based study. World Neurosurgery, 111, e323–e334. https://doi.org/10.1016/j.wneu.2017.01.116
Zhang, Q., Zhao, X. & Qiu, H. (2013). Flavones and flavonols: Phytochemistry and biochemistry. Journal of Functional Foods, 5(4), 1074–1085. https://doi.org/10.1016/j.jff.2013.07.005
Zheng, S., Cheng, Y., Teng, Y., Liu, X., Yu, T., Wang, Y., Liu, J., Hu, Y., Wu, C., Wang, X., Liu, Y., You, C., Gao, X. & Wei, Y. (2017). Application of luteolin nanomicelles anti-glioma effect with improvement in vitro and in vivo. Oncotarget, 8(37), 61146–61162. https://doi.org/10.18632/oncotarget.18019
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Actualidades Biológicas

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores autorizan de forma exclusiva, a la revista Actualidades Biológicas a editar y publicar el manuscrito sometido en caso de ser recomendada y aceptada su publicación, sin que esto represente costo alguno para la Revista o para la Universidad de Antioquia.
Todas las ideas y opiniones contenidas en los artículos son de entera responsabilidad de los autores. El contenido total de los números o suplementos de la revista, está protegido bajo Licencia Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional, por lo que no pueden ser empleados para usos comerciales, pero sí para fines educativos. Sin embargo, por favor, mencionar como fuente a la revista Actualidades Biológicas y enviar una copia de la publicación en que fue reproducido el contenido.


