Resistencia natural a la infección por el VIH-1. Revisión sistemática de la literatura
DOI:
https://doi.org/10.17533/udea.iatreia.216Palabras clave:
Inmunidad Innata, VIH-1, Revisión SistemáticaResumen
Introducción: la investigación sobre la infección por VIH-1 ha permitido identificar individuos que, a pesar de exponerse en múltiples ocasiones al virus, no presentan signos de infección. Se conocen como expuestos a VIH seronegativos o HESN (del inglés HIV-exposed seronegative). Esto sugiere la existencia de mecanismos de resistencia natural al VIH-1.
Objetivo: describir la información disponible en la literatura sobre los HESN y sus mecanismos de resistencia natural.
Métodos: se realizó una revisión sistemática de la literatura de enfoque amplio en seis bases de datos y se siguieron las etapas de la guía PRISMA. El análisis de la información se hizo con frecuencias absolutas, relativas y con un análisis de redes de colaboración científica en Ghepi.
Resultados: se encontraron 124 artículos que suman 4079 individuos HESN. La comunidad científica interesada en este tema estuvo conformada por 688 investigadores de Estados Unidos, Italia, Canadá, España, Brasil y Colombia. Los criterios para definir a un individuo como HESN fueron altamente variables. Se identificaron 33 mecanismos diferentes relacionados con la resistencia natural al VIH-1, dentro de los cuales el más común fue los factores solubles en mucosas y sangre periférica (30,6%), seguido por la mutación Δ32 (14,5%), los alelos KIR/HLA (10,5%) y la IgA neutralizante (10,5%).
Conclusiones: existe una comunidad científica consolidada con interés en estudiar la resistencia natural a la infección por VIH-1. Se observó una significante diversidad en los mecanismos inmunológicos involucrados en la resistencia natural al virus y una alta heterogeneidad en los criterios para definir las poblaciones como HESN.
Descargas
Citas
(1) Allers K, Hütter G, Hofmann J, Loddenkemper C, Rieger K, Thiel E, et al. Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation. Blood [Internet]. 2011;117(10):2791-9. https://doi.org/10.1182/blood-2010-09-309591
(2) Li L, Liu Y, Bao Z, Chen L, Wang Z, Li T, et al. Analysis of CD4+CD25+Foxp3+ regulatory T cells in HIV-exposed seronegative persons and HIV-infected persons with different disease progressions. Viral Immunology [Internet]. 2011;24(1):57-60. https://doi.org/10.1089/vim.2010.0079
(3) Cardona-Arias J. Representaciones sociales de calidad de vida relacionado con la salud en personas con VIH-1/SIDA. Rev Salud Pública [Internet]. 2010;12(5):765-76. Disponible en: http://www.scielo.org.co/scielo. php?script=sci_arttext&pid=S0124-00642010000500007
(4) ONU SIDA. Hoja informativa - Últimas estadísticas sobre el estado de la epidemia de sida [Internet]. 2019. Disponible en: https://www.unaids.org/es/resources/fact-sheet
(5) Sepúlveda C, Puente J. Natural killer cells and the innate immune system in infectious pathology. Rev Med Chil [Internet]. 2000;128(12):1361-70. Disponible en: https://pubmed.ncbi.nlm.nih.gov/11227246/
(6) Burgener A, Sainsbury J, Plummer F, Ball T. Systems biology-based approaches to understand HIV-exposed uninfected women. Curr HIV/AIDS Rep [Internet]. 2010;7(2):53-9. https://doi.org/10.1007/s11904-010-0039-3
(7) Shearer G, Clerici M. Historical perspective on HIV‐exposed seronegative individuals: has nature done the experiment for us? J Infect Dis. 2010 Nov 1;202 Suppl 3:S329-32. https://doi.org/10.1086/655974
(8) Philpott S, Weiser B, Tarwater P, Vermund S, Kleeberger C, Gange SJ, et al. CC chemokine receptor 5 genotype and susceptibility to transmission of human immunodeficiency virus type 1 in women. J Infect Dis [Internet]. 2003;187(4):569-75. https://doi.org/10.1086/367995
(9) Gupta R, Abdul S, McCoy L, Mok H, Peppa D, Salgado M, et al. HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation. Nature [Internet]. 2019;568(7751):244-248. https://doi.org/10.1038/s41586-019-1027-4
(10) Soriano-Viladomiu A, Gatell, JM (dir). Factores inmunogenéticos relacionados con la resistencia/susceptibilidad a la infección por el VIH-1 y su progresión hacia SIDA [tesis en Internet]. [Barcelona]: Universidad de Barcelona. 2006. Disponible en: http://diposit.ub.edu/dspace/handle/2445/42183
(11) Santos Í, da Rosa E, Gräf T, Ferreira L, Petry A, Cavalheiro F, et al. Analysis of Immunological, Viral, Genetic, and Environmental Factors That Might Be Associated with Decreased Susceptibility to HIV Infection in Serodiscordant Couples in Florianópolis, Southern Brazil. AIDS Res and Hum Retroviruses [Internet]. 2015;31(11):1116-25. https://doi.org/10.1089/aid.2015.0168
(12) Yao X, Omange R, Henrick B, Lester R, Kimani J, Ball T, et al. Acting locally: innate mucosal immunity in resistance to HIV-1 infection in Kenyan commercial sex workers. Mucosal Immunol [Internet]. 2014;7(2):268-79. https://doi.org/10.1038/mi.2013.44
(13) Prevalencia de VIH, total (% de la población entre 15 y 24 años de edad) [Internet]. ONUSIDA. 2019. Disponible en: https://datos.bancomundial.org/indicator/SH.DYN.AIDS.ZS
(14) Horton RE, McLaren PJ, Fowke K, Kimani J, Ball TB. Cohorts for the study of HIV‐1-exposed but uninfected individuals: benefits and limitations. J Infect Dis [Internet]. 2010 Nov;202(Suppl 3):S377-81. https://doi.org/10.1086/655971
(15) García F, Álvarez M, Bernal C, Chueca N, Guillot V. Diagnóstico de laboratorio de la infección por el VIH, del tropismo viral y de las resistencias a los antirretrovirales. Enferm Infecc Microbiol Clin [Internet]. 2011;29(4):297-307. https://doi.org/10.1016/j.eimc.2010.12.006
(16) Chan DJ. Factors affecting sexual transmission of HIV-1: current evidence and implications for prevention. Curr HIV Res [Internet]. 2005;3(3):223-41. https://doi.org/10.2174/1570162054368075
(17) Taborda-Vanegas N, Zapata W, Rugeles MT. Genetic and Immunological Factors Involved in Natural Resistance to HIV-1 Infection. Open Virol J [Internet]. 2011;5:35-43. https://doi.org/10.2174/1874357901105010035
(18) Díaz F, Vega J, Patiño P, Bedoya G, Nagles J, Villegas C, et al. Frequency of CCR5 delta-32 mutation in human immunodeficiency virus (HIV)-seropositive and HIV-exposed seronegative individuals and in general population of Medellin, Colombia. Mem Inst Oswaldo Cruz [Internet]. 2000;95(2):237-42. https://doi.org/10.1590/s0074-02762000000200018
(19) Su RC, Sivro A, Kimani J, Jaoko W, Plummer F, Ball T. Epigenetic control of IRF1 responses in HIV-exposed seronegative versus HIV-susceptible individuals. Blood [Internet]. 2011;117(9):2649-57. https://doi.org/10.1182/blood-2010-10-312462
(20) Iqbal S, Ball T, Levinson P, Maranan L, Jaoko W, Wachihi C, et al. Elevated elafin/trappin-2 in the female genital tract is associated with protection against HIV acquisition. AIDS [Internet]. 2009;23(13):1669-77. https://doi.org/10.1097/QAD.0b013e32832ea643
(21) Vince N, Bashirova A, Lied A, Gao X, Dorrell L, McLaren P, et al. HLA class I and KIR genes do not protect against HIV type 1 infection in highly exposed uninfected individuals with hemophilia A. J Infect Dis [Internet]. 2014;210(7):1047-51. https://doi.org/10.1093/infdis/jiu214
(22) Rugeles-López MT, Velilla-Hernandez PA, Acevedo-Saenz LY. Antígenos leucocitarios humanos y su asociación con resistencia/susceptibilidad a la infección por el VIH-1. Iatreia [Internet]. 2012;25(1), 5-11. Disponible en: https://revistas.udea.edu.co/index.php/iatreia/article/view/11099/0
(23) Fenizia C, Rossignol JF, Clerici M, Biasin M. Genetic and immune determinants of immune activation in HIV-exposed seronegative in dividuals and their role in protection against HIV infection. Infect Genet Evol [Internet]. 2018;66:325-334. https://doi.org/10.1016/j.meegid.2017.12.014
(24) Horton R, Ball T, Wachichi C, Jaoko W, Rutherford W, Mckinnon L, et al. Cervical HIV-specific IgA in a population of commercial sex workers correlates with repeated exposure but not resistance to HIV. AIDS Res Hum Retroviruses [Internet]. 2009;25(1):83-92. https://doi.org/10.1089/aid.2008.0207
(25) Lopalco L, Magnani Z, Confetti C, Brianza M, Saracco A, Ferraris G, et al. Anti-CD4 antibodies in exposed seronegative adults and in newborns of HIV type 1-seropositive mothers: a follow-up study. AIDS Res Hum Retroviruses [Internet]. 1999;15(12):1079-85. https://doi.org/10.1089/088922299310377
(26) Manca F, Seravalli E, Valle MT, Fenoglio D, Kunkl A, Pira G, et al. Non-covalent complexes of HIV gp120 with CD4 and/or mAbs enhance activation of gp120-specific T clones and provide intermolecular help for anti-CD4 antibody production. Int Immunol [Internet]. 1993;5(9):1109-17. https://doi.org/10.1093/intimm/5.9.1109
(27) Buchacz K, Parekh B, Padian N, Straten A, Phillips S, Jonte J, et al. HIV-specific IgG in cervicovaginal secretions of exposed HIV-uninfected female sexual partners of HIV-infected men. AIDS Res Hum Retroviruses [Internet]. 2001;17(18):1689-93. https://doi.org/10.1089/08892220152741388
(28) Ghadially H, Keynan Y, Kimani J, Kimani M, Ball T, Plummer F, et al. Altered dendritic cell-natural killer interaction in Kenyan sex workers resistant to HIV-1 infection. AIDS [Internet]. 2012;26(4):429-36. https://doi.org/10.1097/QAD.0b013e32834f98ea
(29) Singla A, Jacobs R, Schmidt R, Wanchu A, Arora S. Increased Activity of NK Cells and Plasmacytoid Dendritic Cells in HIV-Exposed Seronegative (ESN) Individuals. World J AIDS [Internet]. 2012;2(1):6-16. https://doi.org/10.4236/wja.2012.21002
(30) Ruiz-Riol M, Llano A, Ibarrondo J, Zamarreño J, Yusim K, Bach V, et al. Alternative effector-function profiling identifies broad HIV-specific T-cell responses in highly HIV-exposed individuals who remain uninfected. J Infect Dis [Internet]. 2015;211(6):936-46. https://doi.org/10.1093/infdis/jiu534
(31) Mazzoli S, Trabattoni D, Caputo SL, Piconi S, Blé C, Meacci F, et al. HIV-specific mucosal and cellular immunity in HIV-seronegative partners of HIV-seropositive individuals. Nat Med [Internet]. 1997;3(11):1250-7. https://doi.org/10.1038/nm1197-1250
(32) Kaul R, Plummer F, Kimani J, Dong T, Kiama P, Rostron T, et al. HIV-1-specific mucosal CD8+ lymphocyte responses in the cervix of HIV-1-resistant prostitutes in Nairobi. J Immunol [Internet]. 2000;164(3):1602-11. https://doi.org/10.4049/jimmunol.164.3.1602
(33) Biasin M, Sironi M, Saulle I, Pontremoli C, Garziano M, Cagliani R, et al. A 6-amino acid insertion/deletion polymorphism in the mucin domain of TIM-1 confers protections against HIV-1 infection. Microbes Infect [Internet]. 2017;19(1):69-74. https://doi.org/10.1016/j.micinf.2016.09.005
(34) Sironi M, Biasin M, Cagliani R, Forni D, De Luca M, Saulle I, et al. A common polymorphism in TLR3 confers natural resistance to HIV-1 infection. J Immunol [Internet]. 2012;188(2):818-23. https://doi.org/10.4049/jimmunol.1102179
(35) Lajoie J, Juno J, Burgener A, Rahman S, Mogk K, Wachihi C, et al. A distinct cytokine and chemokine profile at the genital mucosa is associated with HIV-1 protection among HIV-exposed seronegative commercial sex workers. Mucosal Immunol [Internet]. 2012;5(3):277-87. https://doi.org/10.1038/mi.2012.7
(36) Girard A, Rallón N, Benito J, Jospin F, Rodriguez C, Chanut B, et al. A high mucosal blocking score is associated with HIV protection. AIDS [Internet]. 2019;33(3):411-423. https://doi.org/10.1097/QAD.0000000000002099
(37) Cagliani R, Riva S, Fumagalli M, Biasin M, Caputo S, Mazzotta F, et al. A positively selected APOBEC3H haplotype is associated with natural resistance to HIV-1 infection. Evolution [Internet]. 2011;65(11):3311-22. https://doi.org/10.1111/j.1558-5646.2011.01368.x
(38) Sironi M, Biasin M, Gnudi F, Cagliani R, Saulle I, Forni D, et al. A regulatory polymorphism in HAVCR2 modulates susceptibility to HIV-1 infection. PLoS One [Internet]. 2014;9(9):e106442. https://doi.org/10.1371/journal.pone.0106442
(39) Rathore A, Chatterjee A, Yamamoto N, Dhole T. Absence of H186R polymorphism in exon 4 of the APOBEC3G gene among North Indian individuals. Genet Test [Internet]. 2008;12(3):453-6. https://doi.org/10.1089/gte.2008.0017
(40) Lopalco L, Pastori C, Cosma A, Burastero S, Capiluppi B, Boeri E, et al. Anti-cell antibodies in exposed seronegative individuals with HIV type 1-neutralizing activity. AIDS Res Hum Retroviruses [Internet]. 2000;16(2):109-15. https://doi.org/10.1089/088922200309458
(41) Cervantes A, Oliveira M, Manfrere C, Lima F, Pereira Z, Duarte J, et al. Antiviral factors and type I/III interferon expression associated with regulatory factors in the oral epithelial cells from HIV-1-serodiscordant couples. Sci Rep [Internet]. 2016;6(1):25875. https://doi.org/10.1038/srep25875
(42) Aguilar-Jimenez W, Zapata W, Rugeles MT. Antiviral molecules correlate with vitamin D pathway genes and are associated with natural resistance to HIV-1 infection. Microbes Infect [Internet]. 2016;18(7-8):510-6. https://doi.org/10.1016/j.micinf.2016.03.015
(43) Vázquez-Perez JA, Ormsby CE, Hernández-Juan R, Torres KJ, Reyes-Terán G. APOBEC3G mRNA expression in exposed seronegative and early stage HIV infected individuals decreases with removal of exposure and with disease progression. Retrovirology [Internet]. 2009; 6(1):23. https://doi.org/10.1186/1742-4690-6-23
(44) Huik K, Avi R, Pauskar M, Kallas E, Jõgeda E, Karki T, et al. Association between TLR3 rs3775291 and resistance to HIV among highly exposed Caucasian intravenous drug users. Infect Genet Evol [Internet]. 2013;20:78-82. https://doi.org/10.1016/j.meegid.2013.08.008
(45) Rathore A, Chatterjee A, Sivarama P, Yamamoto N, Singhal P, Dhole T. Association of CCR5-59029 A/G and CCL3L1 copy number polymorphism with HIV type 1 transmission/progression among HIV type 1-seropositive and repeatedly sexually exposed HIV type 1-seronegative North Indians. AIDS Res Hum Retroviruses [Internet]. 2009;25(11):1149-56. https://doi.org/10.1089/aid.2008.0019
(46) Chatterjee A, Rathore A, Dhole TN. Association of IL-4 589 C/T promoter and IL-4RalphaI50V receptor polymorphism with susceptibility to HIV-1 infection in North Indians. J Med Virol [Internet]. 2009;81(6):959-65. https://doi.org/10.1002/jmv.21478
(47) Rathore A, Chatterjee A, Sivarama P, Yamamoto N, Singhal P, Dhole T. Association of RANTES -403 G/A, -28 C/G and In1.1 T/C polymorphism with HIV-1 transmission and progression among North Indians. J Med Virol [Internet]. 2008;80(7):1133-41. https://doi.org/10.1002/jmv.21201
(48) Turk W, Kimani J, Bielawny T, Wachihi C, Ball T, Plummer F, et al. Associations of human leukocyte antigen-G with resistance and susceptibility to HIV-1 infection in the Pumwani sex worker cohort. AIDS [Internet]. 2013;27(1):7-15. https://doi.org/10.1097/QAD.0b013e32835ab1f2
(49) Burastero S, Gaffi D, Lopalco L, Tambussi G, Borgonovo B, De Santis C, et al. Autoantibodies to CD4 in HIV type 1-exposed seronegative individuals. AIDS Res Hum Retroviruses [Internet]. 1996;12(4):273-80. https://doi.org/10.1089/aid.1996.12.273
(50) Promadej N, Costello C, Wernett M, Kulkarni P, Robison V, Nelson K, et al. Broad human immunodeficiency virus (HIV)-specific T cell responses to conserved HIV proteins in HIV-seronegative women highly exposed to a single HIV-infected partner. J Infect Dis [Internet]. 2003;187(7):1053-63. https://doi.org/10.1086/368127
(51) Valadez-González N, González-Martínez P, Lara-Perera D, Vera-Gamboa L, Góngora-Biachi R. Implicación del alelo CCR5-Δ32 en la progresión clínica de pacientes VIH-1+ en Yucatán, México. Salud Pública Méx [Internet]. 2011;53(6):463-8. Disponible en: https://www.saludpublica.mx/index.php/spm/article/view/7092/9167
(52) Lopalco L, Barassi C, Pastori C, Longhi R, Burastero S, Tambussi G, et al. CCR5-reactive antibodies in seronegative partners of HIV-seropositive individuals down-modulate surface CCR5 in vivo and neutralize the infectivity of R5 strains of HIV-1 In vitro. J Immunol [Internet]. 2000; 164(6):3426-33. https://doi.org/10.4049/jimmunol.164.6.342
(53) Alimonti J, Koesters S, Kimani J, Matu L, Wachihi C, Plummer F, et al. CD4+ T cell responses in HIV-exposed seronegative women are qualitatively distinct from those in HIV-infected women. J Infect Dis [Internet]. 2005;191(1):20-4. https://doi.org/10.1086/425998
(54) Kaul R, Dong T, Plummer F, Kimani J, Rostron T, Kiama P, et al. CD8(+) lymphocytes respond to different HIV epitopes in seronegative and infected subjects. J Clin Invest [Internet]. 2001;107(10):1303-10. https://doi.org/10.1172/JCI12433
(55) Alimonti J, Kimani J, Matu L, Wachihi C, Kaul R, Plummer F, et al. Characterization of CD8 T-cell responses in HIV-1-exposed seronegative commercial sex workers from Nairobi, Kenya. Immunol Cell Biol [Internet]. 2006;84(5):482-5. https://doi.org/10.1111/j.1440-1711.2006.01455.x
(56) Singh S, Sharma A, Arora S. Combination of low producer AA-genotypes in IFN-γ and IL-10 genes makes a high risk genetic variant for HIV disease progression. Cytokine [Internet]. 2016;77:135-44. https://doi.org/10.1016/j.cyto.2015.11.009
(57) Herrero R, Pineda JA, Rivero-Juarez A, Echbarthi M, Real L, Camacho A, et al. Common haplotypes in CD209 promoter and susceptibility to HIV-1 infection in intravenous drug users. Infect Genet Evol [Internet]. 2016;45:20-25. https://doi.org/10.1016/j.meegid.2016.08.014
(58) Burgener A, Rahman S, Ahmad R, Lajoie J, Ramdahin S, Mesa C, et al. Comprehensive proteomic study identifies serpin and cystatin antiproteases as novel correlates of HIV-1 resistance in the cervicovaginal mucosa of female sex workers. J Proteome Res [Internet]. 2011;10(11):5139-49. https://doi.org/10.1021/pr200596r
(59) Koning F, Jansen C, Dekker J, Kaslow R, Dukers N, van Baarle D, et al. Correlates of resistance to HIV-1 infection in homosexual men with high-risk sexual behaviour. AIDS [Internet]. 2004;18(8):1117-26. https://doi.org/10.1097/00002030-200405210-00005
(60) Wang X, Wang Y, Chen L, Zhao J, Liu L, Gang X, et al. Correlation among HLA alleles A*02/A*24 , HLA-DR expression and resistance to HIV-1 infection in Chinese populations. Future Virol [Internet]. 2011;6(4):535-541. https://doi.org/10.2217/fvl.11.19
(61) Card C, McLaren P, Wachihi C, Kimani J, Plummer F, Fowke K. Decreased immune activation in resistance to HIV-1 infection is associated with an elevated frequency of CD4(+)CD25(+)FOXP3(+) regulatory T cells. J Infect Dis [Internet]. 2009;199(9):1318-22. https://doi.org/10.1086/597801
(62) Shacklett BL, Means RE, Larsson M, Wilkens D, Beadle TJ, Merritt MJ, et al. Dendritic cell amplification of HIV type 1-specific CD8+ T cell responses in exposed, seronegative heterosexual women. AIDS Res Hum Retroviruses [Internet]. 2002;18(11):805-15. https://doi.org/10.1089/08892220260139558
(63) Guardo A, Ruiz M, Fernández E, Maleno M, Bargalló M, León A, et al. Detection of HIV-1-specific T-cell immune responses in highly HIV-exposed uninfected individuals by in-vitro dendritic cell co-culture. AIDS [Internet]. 2015;29(11):1309-18. https://doi.org/10.1097/QAD.0000000000000728
(64) Ritchie AJ, Campion SL, Kopycinski J, Moodie Z, Wang ZM, Pandya K, et al. Differences in HIV-specific T cell responses between HIV-exposed and -unexposed HIV-seronegative individuals. J Virol [Internet]. 2011;85(7):3507-16. https://doi.org/10.1128/JVI.02444-10
(65) Kallas E, Huik K, Türk S, Pauskar M, Jõgeda E, Šunina M, et al. Differences in T cell distribution and CCR5 expression in HIV-positive and HIV-exposed seronegative persons who inject drugs. Med Microbiol Immunol [Internet]. 2016;205(3):231-9. https://doi.org/10.1007/s00430-015-0444-8
(66) Lima JF, Oliveira LMS, Pereira NZ, Mitsunari GE, Duarte AJS, Sato M. Distinct natural killer cells in HIV-exposed seronegative subjects with effector cytotoxic CD56(dim) and CD56(bright) cells and memory-like CD57⁺NKG2C⁺CD56(dim) cells. J Acquir Immune Defic Syndr [Internet]. 2014;67(5):463-71. https://doi.org/10.1097/QAI.0000000000000350
(67) Schenal M, Caputo SL, Fasano F, Vichi F, Saresella M, Pierotti P, et al. Distinct patterns of HIV-specific memory T lymphocytes in HIV-exposed uninfected individuals and in HIV-infected patients. AIDS [Internet]. 2005;19(7):653-61. https://doi.org/10.1097/01.aids.0000166088.85951.25
(68) Kebba A, Kaleebu P, Rowland S, Ingram R, Whitworth J, Imami N, et al. Distinct patterns of peripheral HIV-1-specific interferon- gamma responses in exposed HIV-1-seronegative individuals. J Infect Dis [Internet]. 2004;189(9):1705-13. https://doi.org/10.1086/383227
(69) Beyrer C, Artenstein AW, Rugpao S, Stephens H, VanCott TC, Robb ML, et al. Epidemiologic and biologic characterization of a cohort of human immunodeficiency virus type 1 highly exposed, persistently seronegative female sex workers in northern Thailand. J Infec diseases [Internet]. 1999;179(1):59-67. https://doi.org/10.1086/314556
(70) Su R, Sivro A, Kimani J, Jaoko W, Plummer FA, Ball T. Epigenetic control of IRF1 responses in HIV-exposed seronegative versus HIV-susceptible individuals. Blood [Internet]. 2011;117(9):2649-57. https://doi.org/10.1182/blood-2010-10-312462
(71) Eyeson J, King D, Boaz M, Sefia E, Tomkins S, Waters A, et al. Evidence for Gag p24-specific CD4 T cells with reduced susceptibility to R5 HIV-1 infection in a UK cohort of HIV-exposed-seronegative subjects. AIDS [Internet]. 2003;17(16):2299-311. Disponible en: https://journals.lww.com/aidsonline/Fulltext/2003/11070/Evidence_for_Gag_p24_specific_CD4_T_cells_with.4.aspx
(72) Reiche E, Ehara M, Bonametti A, Morimoto H, Akira A, Wiechmann L, et al. Frequency of CCR5-Delta32 deletion in human immunodeficiency virus type 1 (HIV-1) in healthy blood donors, HIV-1-exposed seronegative and HIV-1-seropositive individuals of southern Brazilian population. Int J Mol Med [Internet]. 2008;22(5):669-75. Disponible en: https://pubmed.ncbi.nlm.nih.gov/18949389/
(73) Li H, Liu T, Hong Z. Gene polymorphisms in CCR5, CCR2, SDF1 and RANTES among Chinese Han population with HIV-1 infection. Infect Gene Evol [Internet]. 2014;24:99-104. https://doi.org/10.1016/j.meegid.2014.03.009
(74) Chatterjee A, Rathore A, Sivarama P, Yamamoto N, Dhole T. Genetic association of IL-10 gene promoter polymorphism and HIV-1 infection in North Indians. J Clin Immunol [Internet]. 2009;29(1):71-7. https://doi.org/10.1007/s10875-008-9220-5
(75) Aguilar-Jimenez W, Zapata W, Rivero-Juárez A, Pineda JA, Laplana M, Taborda NA, et al. Genetic associations of the vitamin D and antiviral pathways with natural resistance to HIV-1 infection are influenced by interpopulation variability. Infect Genet Evol [Internet]. 2019;73:276-286. https://doi.org/10.1016/j.meegid.2019.05.014
(76) Cagliani R, Riva S, Biasin M, Fumagalli M, Pozzoli U, Caputo S, et al. Genetic diversity at endoplasmic reticulum aminopeptidases is maintained by balancing selection and is associated with natural resistance to HIV-1 infection. Hum Mol Genet [Internet]. 2010;19(23):4705-14. https://doi.org/10.1093/hmg/ddq401
(77) Kanari Y, Clerici M, Abe H, Kawabata H, Trabattoni D, Caputo SL, et al. Genotypes at chromosome 22q12-13 are associated with HIV-1-exposed but uninfected status in Italians. AIDS [Internet]. 2005;19(10):1015-24. https://doi.org/10.1097/01.aids.0000174447.48003.dd
(78) Vega J, Villegas S, Aguilar W, Rugeles M, Bedoya G, Zapata W. Haplotypes in CCR5-CCR2, CCL3 and CCL5 are associated with natural resistance to HIV-1 infection in a Colombian cohort. Biomédica [Internet]. 2017;37(2):267-273. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-41572017000200267
(79) Aguilar-Jimenez W, Saulle I, Trabattoni D, Vichi F, Lo Caputo S, Mazzotta F, et al. High Expression of Antiviral and Vitamin D Pathway Genes Are a Natural Characteristic of a Small Cohort of HIV-1-Exposed Seronegative Individuals. Front Immunol [Internet]. 2017;8:136. https://doi.org/10.3389/fimmu.2017.00136
(80) Gonzalez SM, Taborda NA, Feria MG, Arcia D, Aguilar-Jiménez W, Zapata W, et al. High Expression of Antiviral Proteins in Mucosa from Individuals Exhibiting Resistance to Human Immunodeficiency Virus. PLoS One [Internet]. 2015;10(6):e0131139. https://doi.org/10.1371/journal.pone.0131139
(81) Singh S, Sharma A, Arora S. High producer haplotype (CAG) of -863C/A, -308G/A and -238G/A polymorphisms in the promoter region of TNF-α gene associate with enhanced apoptosis of lymphocytes in HIV-1 subtype C infected individuals from North India. PLoS One [Internet]. 2014;9(5):e98020. https://doi.org/10.1371/journal.pone.0098020
(82) Aguilar-Jiménez W, Zapata W, Caruz A, Rugeles MT. High transcript levels of vitamin D receptor are correlated with higher mRNA expression of human beta defensins and IL-10 in mucosa of HIV-1-exposed seronegative individuals. PLoS One [Internet]. 2013;8(12):e82717. https://doi.org/10.1371/journal.pone.0082717
(83) Fulcher JA, Romas L, Hoffman JC, Elliott J, Saunders T, Burgener A, et al. Highly Human Immunodeficiency Virus-Exposed Seronegative Men Have Lower Mucosal Innate Immune Reactivity. AIDS Res Hum Retroviruses [Internet]. 2017;33(8):788-795. https://doi.org/10.1089/AID.2017.0014
(84) Jackson E, Zhang CX, Kiani Z, Lisovsky I, Tallon B, Del Corpo A, et al. HIV exposed seronegative (HESN) compared to HIV infected individuals have higher frequencies of telomeric Killer Immunoglobulin-like Receptor (KIR) B motifs; Contribution of KIR B motif encoded genes to NK cell responsiveness. PLoS One [Internet]. 2017; 12(9):e0185160. https://doi.org/10.1371/journal.pone.0185160
(85) Carrillo J, Restrepo C, Rallón N, Massanella M, Romero J, Rodríguez C, et al. HIV exposed seronegative individuals show antibodies specifically recognizing native HIV envelope glycoprotein. AIDS [Internet]. 2013;27(9):1375-85. https://doi.org/10.1097/QAD.0b013e32835fac08
(86) Kebba A, Kaleebu P, Serwanga J, Rowland S, Yirrell D, Downing R, et al. HIV type 1 antigen-responsive CD4+ T-lymphocytes in exposed yet HIV Type 1 seronegative Ugandans. AIDS Res Hum Retroviruses [Internet]. 2004;20(1):67-75. https://doi.org/10.1089/088922204322749512
(87) Tudor D, Derrien M, Diomede L, Drillet A, Houimel M, Moog C, et al. HIV-1 gp41-specific monoclonal mucosal IgAs derived from highly exposed but IgG-seronegative individuals block HIV-1 epithelial transcytosis and neutralize CD4(+) cell infection: an IgA gene and functional analysis. Mucosal Immunol [Internet]. 2009;2(5):412-26. https://doi.org/10.1038/mi.2009.89
(88) Hernandez JC, Laurent G, Urcuqui-Inchima S. HIV-1-exposed seronegative individuals show alteration in TLR expression and pro-inflammatory cytokine production ex vivo: An innate immune quiescence status? Immunol Res. 2016;64(1):280-90. https://doi.org/10.1007/s12026-015-8748-8
(89) Guthrie B, Lohman B, Liu A, Bosire R, Nuvor S, Choi R, et al. HIV-1-specific enzyme-linked immunosorbent spot assay responses in HIV-1-exposed uninfected partners in discordant relationships compared to those in low-risk controls. Clin Vaccine Immunol [Internet]. 2012;19(11):1798-805. https://doi.org/10.1128/CVI.00179-12
(90) McLaren PJ, Ball TB, Wachihi C, Jaoko W, Kelvin DJ, Danesh A, et al. HIV‐exposed seronegative commercial sex workers show a quiescent phenotype in the CD4+ T cell compartment and reduced expression of HIV‐dependent host factors. J Infect Dis [Internet]. 2010;202(Suppl 3):S339-44. https://doi.org/10.1086/655968
(91) Hirbod T, Kaul R, Reichard C, Kimani J, Ngugi E, Bwayo J, et al. HIV-neutralizing immunoglobulin A and HIV-specific proliferation are independently associated with reduced HIV acquisition in Kenyan sex workers. AIDS [Internet]. 2008;22(6):727-35. https://doi.org/10.1097/QAD.0b013e3282f56b64
(92) Sriwanthana B, Hodge T, Mastro T, Dezzutti C, Bond K, Stephens H, et al. HIV-specific cytotoxic T lymphocytes, HLA-A11, and chemokine-related factors may act synergistically to determine HIV resistance in CCR5 delta32-negative female sex workers in Chiang Rai, northern Thailand. AIDS Res Hum Retroviruses [Internet]. 2001;17(8):719-34. https://doi.org/10.1089/088922201750236997
(93) Trabattoni D, Caputo S, Maffeis G, Vichi F, Biasin M, Pierotti P, et al. Human alpha defensin in HIV-exposed but uninfected individuals. J Acquir Immune Defic Syndr [Internet]. 2004;35(5):455-63. https://doi.org/10.1097/00126334-200404150-00003
(94) Bernard N, Yannakis C, Lee J, Tsoukas C. Human immunodeficiency virus (HIV)-specific cytotoxic T lymphocyte activity in HIV-exposed seronegative persons. J Infect Dis [Internet]. 1999;179(3):538-47. https://doi.org/10.1086/314621
(95) Mazzoli S, Lopalco L, Salvi A, Trabattoni D, Caputo S, Semplici F, et al. Human immunodeficiency virus (HIV)-specific IgA and HIV neutralizing activity in the serum of exposed seronegative partners of HIV-seropositive persons. J Infect Dis [Internet]. 1999;180(3):871-5. https://doi.org/10.1086/314934
(96) Vázquez-Perez JA, Basualdes-Sigales MC, Reyes-Terán G, Gudiño-Rosales JC, Soler CC. Human Immunodeficiency Virus type 1 in seronegative infants born to HIV-1-infected mothers. Virol J [Internet]. 2006;3(1):1-6. https://doi.org/10.1186/1743-422X-3-52
(97) Nicastri E, Ercoli L, Sarmati L, d'Ettorre G, Iudicone P, Massetti P, et al. Human immunodeficiency virus-1 specific and natural cellular immunity in HIV seronegative subjects with multiple sexual exposures to virus. J Med Virol [Internet]. 2001;64(3):232-7. https://doi.org/10.1002/jmv.1041
(98) Rallón N, Restrepo C, Vicario J, Romero J, Rodríguez C, García-Samaniego J, et al. Human leucocyte antigen (HLA)-DQB1*03:02 and HLA-A*02:01 have opposite patterns in their effects on susceptibility to HIV infection. HIV Med [Internet]. 2017;18(8):587-594. https://doi.org/10.1111/hiv.12494
(99) Zapata W, Aguilar-Jiménez W, Feng Z, Weinberg A, Russo A, Potenza N, et al. Identification of innate immune antiretroviral factors during in vivo and in vitro exposure to HIV-1. Microbes Infect [Internet]. 2016;18(3):211-9. https://doi.org/10.1016/j.micinf.2015.10.009
(100) Prodger J, Hirbod T, Kigozi G, Nalugoda F, Reynolds S, Galiwango R, et al. Immune correlates of HIV exposure without infection in foreskins of men from Rakai, Uganda. Mucosal Immunol [Internet]. 2014;7(3):634-44. https://doi.org/10.1038/mi.2013.83
(101) Taborda N, Zapata-Builes W, Montoya C, Rugeles MT. Short communication: Increased expression of secretory leukocyte protease inhibitor in oral mucosa of Colombian HIV type 1-exposed seronegative individuals. AIDS Res Hum Retroviruses [Internet]. 2012;28(9):1059-62. https://doi.org/10.1089/AID.2011.0151
(102) Montoya CJ, Velilla PA, Chougnet C, Landay AL, Rugeles MT. Increased IFN-gamma production by NK and CD3+/CD56+ cells in sexually HIV-1-exposed but uninfected individuals. Clin Immunol (Internet]. 2006;120(2):138-46. https://doi.org/10.1016/j.clim.2006.02.008
(103) Zapata W, Rodriguez B, Weber J, Estrada H, Quiñones-Mateu ME, Zimermman PA, et al. Increased levels of human beta-defensins mRNA in sexually HIV-1 exposed but uninfected individuals. Curr HIV Res [Internet]. 2008;6(6):531-8. https://doi.org/10.2174/157016208786501463
(104) Zapata W, Aguilar-Jiménez W, Pineda-Trujillo N, Rojas W, Estrada H, Rugeles MT. Influence of CCR5 and CCR2 genetic variants in the resistance/susceptibility to HIV in serodiscordant couples from Colombia. AIDS AIDS Res Hum Retroviruses [Internet]. 2013;29(12):1594-603. https://doi.org/10.1089/aid.2012.0299
(105) Kallas E, Huik K, Pauskar M, Jõgeda E, Karki T, Jarlais D, et al. Influence of interleukin 10 polymorphisms -592 and -1082 to the HIV, HBV and HCV serostatus among intravenous drug users. Infect Genet Evol [Internet]. 2015;30:175-180. https://doi.org/10.1016/j.meegid.2014.12.023
(106) Zimmerman PA, Buckler-White A, Alkhatib G, Spalding T, Kubofcik J, Combadiere C, et al. Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5: studies in populations with contrasting clinical phenotypes, defined racial background, and quantified risk. Mol Med [Internet]. 1997;3(1):23-36. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2230106/
(107) Tomescu C, Seaton KE, Smith P, Taylor M, Tomaras GD, Metzger DS, et al. Innate activation of MDC and NK cells in high-risk HIV-1-exposed seronegative IV-drug users who share needles when compared with low-risk nonsharing IV-drug user controls. J Acquir Immune Defic Syndr [Internet]. 2015;68(3):264-73. https://doi.org/10.1097/QAI.0000000000000470
(108) Ortega PAS, Saulle I, Mercurio V, Ibba SV, Lori EM, Fenizia C, et al. Interleukin 21 (IL-21)/microRNA-29 (miR-29) axis is associated with natural resistance to HIV-1 infection. AIDS [Internet]. 2018;32(17):2453-2461. https://doi.org/10.1097/QAD.0000000000001938
(109) Hernandez JC, Giraldo DM, Paul S, Urcuqui-Inchima S. Involvement of neutrophil hyporesponse and the role of Toll-like receptors in human immunodeficiency virus 1 protection. PLoS One [Internet]. 2015; 10(3):e0119844. https://doi.org/10.1371/journal.pone.0119844
(110) Habegger de Sorrentino A, Sinchi JL, Marinic K, López R, Iliovich E. KIR-HLA-A and B alleles of the Bw4 epitope against HIV infection in discordant heterosexual couples in Chaco Argentina. Immunology [Internet]. 2013;140(2):273-9. https://doi.org/10.1111/imm.12137
(111) Addo MM, Altfeld M, Brainard DM, Rathod A, Piechocka-Trocha A, Fideli U, et al. Lack of detectable HIV-1-specific CD8(+) T cell responses in Zambian HIV-1-exposed seronegative partners of HIV-1-positive individuals. J Infect Dis [Internet]. 2011;203(2):258-62. https://doi.org/10.1093/infdis/jiq028
(112) Restrepo C, Rallón NI, Romero J, Rodríguez C, Hernando V, López M, et al Low-level exposure to HIV induces virus-specific T cell responses and immune activation in exposed HIV-seronegative individuals. J Immunol [Internet]. 2010;185(2):982-9. https://doi.org/10.4049/jimmunol.1000221
(113) Chatterjee A, Rathore A, Yamamoto N, Dhole T. Mannose-binding lectin (+54) exon-1 gene polymorphism influence human immunodeficiency virus-1 susceptibility in North Indians. Tissue Antigens [Internet]. 2011;77(1):18-22. https://doi.org/10.1111/j.1399-0039.2010.01563.x
(114) Slyker JA, Lohman BL, Mbori-Ngacha DA, Reilly M, Wee EGT, Dong T, et al. Modified vaccinia Ankara expressing HIVA antigen stimulates HIV-1-specific CD8 T cells in ELISpot assays of HIV-1 exposed infants. Vaccine [Internet]. 2005;23(38):4711-9. https://doi.org/10.1016/j.vaccine.2005.01.145
(115) Rugeles MT, Solano F, Díaz FJ, Bedoya VI, Patiño PJ. Molecular characterization of the CCR 5 gene in seronegative individuals exposed to human immunodeficiency virus (HIV). J Clin Virol [Internet]. 2002;23(3):161-9. https://doi.org/10.1016/s1386-6532(01)00219-0
(116) Hladik F, Desbien A, Lang J, Wang L, Ding Y, Holte S, et al. Most highly exposed seronegative men lack HIV-1-specific, IFN-gamma-secreting T cells. J Immunol [Internet]. 2003;171(5):2671-83. https://doi.org/10.4049/jimmunol.171.5.2671
(117) Devito C, Broliden K, Kaul R, Svensson L, Johansen K, Kiama P, et al. Mucosal and plasma IgA from HIV-1-exposed uninfected individuals inhibit HIV-1 transcytosis across human epithelial cells. J Immunol [Internet]. 2000;165(9):5170-6. https://doi.org/10.4049/jimmunol.165.9.5170
(118) Caputo S, Trabattoni D, Vichi F, Piconi S, Lopalco L, Villa M, et al. Mucosal and systemic HIV-1-specific immunity in HIV-1-exposed but uninfected heterosexual men. AIDS [Internet]. 2003; 17(4):531-9. https://doi.org/10.1097/00002030-200303070-00008
(119) Biasin M, Caputo S, Speciale L, Colombo F, Racioppi L, Zagliani A, et al. Mucosal and systemic immune activation is present in human immunodeficiency virus-exposed seronegative women. J Infect Dis [Internet]. 2000;182(5):1365-74. https://doi.org/10.1086/315873
(120) Rahman S, Rabbani R, Wachihi C, Kimani J, Plummer F, Ball T, et al. Mucosal serpin A1 and A3 levels in HIV highly exposed sero-negative women are affected by the menstrual cycle and hormonal contraceptives but are independent of epidemiological confounders. Am J Reprod Immunol [Internet]. 2013;69(1):64-72. https://doi.org/10.1111/aji.12014
(121) Stein DR, Shaw SY, McKinnon LR, Abou M, McCorrister SJ, Westmacott G, et al. Mx2 expression is associated with reduced susceptibility to HIV infection in highly exposed HIV seronegative Kenyan sex workers. AIDS [Internet]. 2015;29(1):35-41. https://doi.org/10.1097/QAD.0000000000000490
(122) Fourcade L, Sabourin-Poirier C, Perraud V, Faucher MC, Chagnon-Choquet J, Labbé AC, et al. Natural Immunity to HIV is associated with Low BLyS/BAFF levels and low frequencies of innate marginal zone like CD1c+ B-cells in the genital tract. PLoS Pathog [Internet]. 2019;15(6):e1007840. https://doi.org/10.1371/journal.ppat.1007840
(123) Pancino G, Saez-Cirion A, Scott-Algara D, Paul P. Natural resistance to HIV infection: lessons learned from HIV‐exposed uninfected individuals. J Infect Dis [Internet]. 2010;202(Suppl 3):S345-50. https://doi.org/10.1086/655973
(124) Kaul R, Rowland-Jones S, Kimani J, Fowke K, Dong T, Kiama P, et al. New insights into HIV-1 specific cytotoxic T-lymphocyte responses in exposed, persistently seronegative Kenyan sex workers. Immunol Lett [Internet]. 2001;79(1-2):3-13. https://doi.org/10.1016/s0165-2478(01)00260-7
(125) Herbeck J, Ghorai S, Chen L, Rinaldo CR, Margolick JB, Detels R, Jet al. p21(WAF1/CIP1) RNA expression in highly HIV-1 exposed, uninfected individuals. PLoS One [Internet]. 2015;10(3):e0119218. https://doi.org/10.1371/journal.pone.0119218
(126) Lima JF, Oliveira LMS, Pereira NZ, Duarte AJS, Sato MN. Polyfunctional natural killer cells with a low activation profile in response to Toll-like receptor 3 activation in HIV-1-exposed seronegative subjects. Sci Rep [Internet]. 2017;7(1):524. https://doi.org/10.1038/s41598-017-00637-3
(127) Lopalco LL, Barassi C, Paolucci C, Breda D, Brunelli D, Nguyen M, et al. Predictive value of anti-cell and anti-human immunodeficiency virus (HIV) humoral responses in HIV-1-exposed seronegative cohorts of European and Asian origin. J Gen Virol [Internet]. 2005;86(2):339-348. https://doi.org/10.1099/vir.0.80585-0
(128) Butera ST, Pisell TL, Limpakarnjanarat K, Young NL, Hodge TW, Mastro TD, et al. Production of a novel viral suppressive activity associated with resistance to infection among female sex workers exposed to HIV type 1. AIDS Res Hum Retroviruses [Internet]. 2001;17(8):735-44. https://doi.org/10.1089/088922201750237004
(129) Pala P, Serwanga J, Watera C, Ritchie A, Moodie Z, Wang M, et al. Center for HIV/AIDS Vaccine Immunology. Quantitative and qualitative differences in the T cell response to HIV in uninfected Ugandans exposed or unexposed to HIV-infected partners. J Virol [Internet]. 2013;87(16):9053-63. https://doi.org/10.1128/JVI.00721-13
(130) Rathore A, Chatterjee A, Sood V, Khan SZ, Banerjea AC, Yamamoto N, et al. Risk for HIV-1 infection is not associated with repeat-region polymorphism in the DC-SIGN neck domain and novel genetic DC-SIGN variants among North Indians. Clin Chim Acta [Internet]. 2008;391(1-2):1-5. https://doi.org/10.1016/j.cca.2007.12.019
(131) Rathore A, Chatterjee A, Sivarama P, Yamamoto N, Dhole T. Role of homozygous DC-SIGNR 5/5 tandem repeat polymorphism in HIV-1 exposed seronegative North Indian individuals. J Clin Immunol [Internet]. 2008;28(1):50-7. https://doi.org/10.1007/s10875-007-9131-x
(132) Ricci E, Malacrida S, Zanchetta M, Montagna M, Giaquinto C, De Rossi A. Role of beta-defensin-1 polymorphisms in mother-to-child transmission of HIV-1. J Acquir Immune Defic Syndr [Internet]. 2009;51(1):13-9. https://doi.org/10.1097/QAI.0b013e31819df249
(133) Colón K, Speicher DW, Smith P, Taylor M, Metzger DS, Montaner LJ, et al. S100A14 Is Increased in Activated NK Cells and Plasma of HIV-Exposed Seronegative People Who Inject Drugs and Promotes Monocyte-NK Crosstalk. J Acquir Immune Defic Syndr [Internet]. 2019;80(2):234-241. https://doi.org/10.1097/QAI.0000000000001911
(134) Burgener A, Mogk K, Westmacott G, Plummer F, Ball B, Broliden K, et al. Salivary basic proline-rich proteins are elevated in HIV-exposed seronegative men who have sex with men. AIDS [Internet]. 2012;26(15):1857-67. https://doi.org/10.1097/QAD.0b013e328357f79c
(135) Wang Y, Wang X, Peng J, Chen L, Cheng J, Nie S, et al. Short communication: SDF1-3'A gene mutation is correlated with increased susceptibility to HIV type 1 infection by sexual transmission in Han Chinese. AIDS Res Hum Retroviruses [Internet]. 2008;24(11):1341-5. https://doi.org/10.1089/aid.2008.0066
(136) Bomsel M, Lopalco L, Uberti-Foppa C, Siracusano G, Ganor Y. Short Communication: Decreased Plasma Calcitonin Gene-Related Peptide as a Novel Biomarker for HIV-1 Disease Progression. AIDS Res Hum Retroviruses [Internet]. 2019;35(1):52-55. https://doi.org/10.1089/AID.2018.0210
(137) Saulle I, Biasin M, Gnudi F, Rainone V, Ibba SV, Caputo SL, et al. Short Communication: Immune Activation Is Present in HIV-1-Exposed Seronegative Individuals and Is Independent of Microbial Translocation. AIDS Res Hum Retroviruses [Internet]. 2016;32(2):129-33. https://doi.org/10.1089/AID.2015.0019.
(138) Silva ML, Melo VH, Aleixo AW, Aleixo L, Pascoal-Xavier MA, Silva RO, et al. Social and immunological differences among uninfected Brazilians exposed or unexposed to human immunodeficiency virus-infected partners. Mem Inst Oswaldo Cruz [Internet]. 2014;109(6):775-81. https://doi.org/10.1590/0074-0276140140
(139) Reiche EMV, Watanabe MAE, Bonametti AM, Morimoto HK, Morimoto AS, Wiechmann SL, et al. Stromal cell-derived factor 1 (SDF1) genetic polymorphism in a sample of healthy individuals, seronegative individuals exposed to human immunodeficiency virus type 1 (HIV-1) and patients infected with HIV-1 from the Brazilian population. Int J Immunogenet [Internet]. 2006;33(2):127-33. https://doi.org/10.1111/j.1744-313X.2006.00583.x
(140) Mori M, Wichukchinda N, Miyahara R, Rojanawiwat A, Pathipvanich P, Tsuchiya N, et al. The effect of KIR2D-HLA-C receptor-ligand interactions on clinical outcome in a HIV-1 CRF01_AE-infected Thai population. AIDS [Internet]. 2015;29(13):1607-15. https://doi.org/10.1097/QAD.0000000000000747
(141) Omollo K, Boily-Larouche G, Lajoie J, Kimani M, Cheruiyot J, Kimani J, et al. The Impact of Sex Work Interruption on Blood-Derived T Cells in Sex Workers from Nairobi, Kenya. AIDS Res Hum Retroviruses [Internet]. 2016;32(10-11):1072-1078. https://doi.org/10.1089/AID.2015.0332
(142) Tallon BJM, Bruneau J, Tsoukas CM, Routy JP, Kiani Z, Tan X, et al. Time to seroconversion in HIV-exposed subjects carrying protective versus non protective KIR3DS1/L1 and HLA-B genotypes. PLoS One [Internet]. 2014;9(10):e110480. https://doi.org/10.1371/journal.pone.0110480
(143) Yang C, Boone L, Nguyen TX, Rudolph D, Limpakarnjanarat K, Mastro TD, et al. theta-Defensin pseudogenes in HIV-1-exposed, persistently seronegative female sex-workers from Thailand. Infect Genet Evol [Internet]. 2005;5(1):11-5. https://doi.org/10.1016/j.meegid.2004.05.006
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Iatreia
Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.
Los artículos publicados en la revista están disponibles para ser utilizados bajo la licencia Creative Commons, específicamente son de Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.
Los trabajos enviados deben ser inéditos y suministrados exclusivamente a la Revista; se exige al autor que envía sus contribuciones presentar los formatos: presentación de artículo y responsabilidad de autoría completamente diligenciados.