Structural modification of trans-cinnamic acid using Colletotrichum acutatum


  • Rodrigo Velasco B. National University of Colombia
  • Jesús H. Gil G. National University of Colombia
  • Carlos M. García P. National University of Colombia
  • Diego L. Durango R. National University of Colombia



phytopathogenic fungus, metabolic pathway, culture media, biocatalyst


The biotransformation of trans-cinnamic acid by whole cells of the Colombian native phytopathogenic fungus Colletotrichum acutatum was studied. Initially, fungitoxicity of this compound against C. acutatum was evaluated; trans-cinnamic acid exhibited a moderate to weak toxicity against the microorganism and apparently a detoxification mechanism was present. Then, in order to study such mechanism and explore the capacity of this fungus to biotransform trans-cinnamic acid into value-added products, the microorganism was incubated with the substrate using three different culture media (Czapeck-Dox, Sabouraud and PDB) at room conditions. Using Czapeck-Dox medium, whole cultures of C. acutatum reduced trans-cinnamic acid, first to aldehydes (trans-cinnamaldehyde and 3-phenylpropanal), then to alcohols (cinnamyl alcohol and 3-phenyl-1-propanol). Subsequently, these alcohols were transformed to the corresponding acetyl esters. Nevertheless, some of these products were absent or present at different concentration when culture medium was changed. The results suggest a mechanism of detoxification in which the α,β-unsaturated carbonyl system is affected. Besides, the formed metabolic products are useful compounds used as fragrances and flavors. Therefore, metabolism of trans-cinnamic acid using C. acutatum can provide new potential metabolic targets to control C. acutatum as well as a simple and efficient way to obtain flavor compounds and perfumes, such as cinnamyl alcohol and 3-phenyl-1-propanol, and their acetyl esters.

= 53 veces | PDF (ESPAÑOL (ESPAÑA))
= 22 veces|


Download data is not yet available.

Author Biographies

Rodrigo Velasco B., National University of Colombia

Natural Products and Food Chemistry Group. Science Faculty. School of Chemistry.

Jesús H. Gil G., National University of Colombia

Department of Agricultural and Food Engineering. Faculty of agricultural sciences.

Carlos M. García P., National University of Colombia

Natural Products and Food Chemistry Group. Science Faculty. School of Chemistry.

Diego L. Durango R., National University of Colombia

Natural Products and Food Chemistry Group. Science Faculty. School of Chemistry.


J. Leresche, H. Meyer. “Chemocatalysis and biocatalyst (biotransformation): some thoughts of a chemist and of a biotechnologist”. Org. Process. Res. Dev. Vol. 10. 2006. pp. 572-580.

H. Luna. “Aplicación de la biocatálisis a la preparación de intermediarios para la síntesis de fármacos”. J. Mex. Chem. Soc. Vol. 48. 2004. pp. 211-219.

K. Faber, R. Patel. “Chemical biotechnology: A happy marriage between chemistry and biotechnology: asymmetric synthesis via green chemistry”. Curr. Opin. Biotechnol. Vol. 11. 2000. pp. 517-519.

M. Daoubi, R. Galán, A. Benharref, I. Collado. “Screening study of lead compounds for natural product-based fungicides: antifungal activity and biotransformation of 6α, 7α-Dihydroxy-β-himachalene by Botrytis cinerea”. J. Agric. Food Chem. Vol. 53. 2005. pp. 6673-6677.

Y. Correa, D. Durango, C. García. “Transformación microbiana del arilpropanoide cinamaldehído con el hongo fitopatógeno Colletotrichum acutatum”. Vitae. Vol. 16. 2009. pp. 83-91.

R. Velasco, J. Gil, C. García, D. Durango. “Production of 2-phenylethanol in the biotransformation of cinnamyl alcohol by the plant pathogenic fungus Colletotrichum acutatum”. Vitae. Vol. 17. 2010. pp. 272-280.

E. Shimoni, U. Ravid, Y. Shoham. “Isolation of a Bacillus sp. capable of transforming isoeugenol to vanillin”. J. Biotechnol. Vol. 78. 2000. pp. 1-9.

S. Zacchino, S. López, G. Pezzenati, R. Furlán, C. Santecchia, L. Muñoz, F. Giannini, A. Rodríguez, R. Enriz. “In vitro evaluation of antifungal properties of phenylpropanoids and related compounds acting against dermatophytes”. J. Nat. Prod. Vol. 62. 1999. pp. 1353-1357.

D. Sivakumar, R. Wijeratnam, R. Wijesundera, M. Abeyesekere. “Control of postharvest diseases of rambutan using cinnamaldehyde”. Crop Prot. Vol. 21. 2002. pp. 847-852.

S. Cheng, J. Liu, E. Chang, S. Chang. “Antifungal activity of cinnamaldehyde and eugenol congeners against wood-rot fungi”. Bioresource Technol. Vol. 99. 2008. pp. 5145-5149.

S. Chang, P. Chen, S. Chang. “Antibacterial activity of leaf essential oils and components from Cinnamomum osmophloeum”. J. Ethnopharmacol. Vol. 77. 2001. pp. 123-127.

H. Lee, S. Cheng, S. Chang. “Antifungal property of the essential oils and their constituents from Cinnamomum osmophloeum leaf against tree pathogenic fungi”. J. Sci. Food Agric. Vol. 85. 2005. pp. 2047-2053.

H. Surburg, J. Panten. Common fragrance and flavor materials: Preparation, Properties and Uses. 5th ed. Ed. Wiley-VCH Verlag Gmbh. Weinheim (Germany). 2006. pp. 7-175.

R. Thauer, K. Jungermann, K. Decker. “Energy conservation in chemotropic anaerobic bacteria”. Bacteriol. Rev. Vol. 41. 1977. pp. 100-180.

Y. Chen, J. Rosazza. “Microbial transformation of ibuprofen by a Nocardia species”. Appl. Environ. Microbiol. Vol. 60. 1994. pp. 1292-1296.

L. Fraisse, H. Simon. “Observations on the reduction of non-activated carboxylates by Clostridium formicoaceticum with carbon monoxide or formate and the influence of various viologens”. Arch. Microbiol. Vol. 150. 1988. pp. 381-386.

H. Arfmann, W. Abraham. “Microbial reduction of aromatic carboxylic acids”. Z. Naturforsch. Vol. 48c. 1993. pp. 52-57.

A. He, T. Li, L. Daniels, I. Fotheringham, J. Rosazza. “Nocardia sp. carboxylic acid reductase: cloning, expression, and characterization of a new aldehyde oxidoreductase family”. Appl. Environ. Microbiol. Vol. 70. 2004. pp. 1874-1881.

T. Li, J. Rosazza. “The carboxylic acid reduction pathway in Nocardia. Purification and characterization of the aldehyde reductase”. J. Industrial Microbiol. Biotechnol. Vol. 25. 2000. pp. 328-332.

M. Hall, B. Hauer, R. Stuermer, W. Kroutil, K. Faber. “Asymmetric whole-cell bioreduction of an α,βunsaturated aldehyde (citral): competing prim-alcohol dehydrogenase and C–C lyase activities”. Tetrahedron: Asymmetr. Vol. 17. 2006. pp. 3058-3062.

R. Stuermer, B. Hauer, M. Hall, K. Faber. “Asymmetric bioreduction of activated C=C bonds using enoate reductases from the old yellow enzyme family”. Curr. Opin. Chem. Biol. Vol. 11. 2007. pp. 203-213.

H. Simon, H. White, H. Lebertz, J. Thanos. “Reduktion von 2-enoaten und alkanoaten mit kohlenmonoxid oder formiat, viologenen und Clostridium thermoaceticum zu gesättigten säuren und ungesättigten bzw, gesättigten alkoholen”. Angew. Chem. Vol. 99. 1987. pp. 785-787.

N. Kato, H. Konishi, K. Uda, M. Shimao, C. Sakazawa. “Microbial reduction of benzoate to benzyl alcohol”. Agric. Biol. Chem. Vol. 52. 1988. pp. 1885-1886.

R. Villa, F. Molinari. “Reduction of carbonylic and carboxylic groups by plant cell cultures”. J. Nat. Prod. Vol. 71. 2008. pp. 693-696.

D. Sivakumar, R. Wijeratnam, R. Wijesundera, M. Abeyesekere. “Control of postharvest diseases of rambutan using cinnamaldehyde”. Crop Prot. Vol. 21. 2002. pp. 847-852.

J. Carballeira, M. Quezada, P. Hoyos, Y. Simeó, M. Hernaiz, A. Alcántara, J. Sinisterra. “Microbial cells as catalysts for stereoselective red–ox reactions”. Biotechnol. Adv. Vol. 29. 2009. pp. 686-714.

J. Rosazza, T. Li. Carboxylic acid reductase and methods for use of the same. U.S. patent 5795759. August 18. 1998.

S. Gurram, N. Kollu, G. Sivadevuni, M. Solipuram. “Biotransformation of albendazole by Cunninghamella blakesleeana: influence of incubation time, media, vitamins and solvents”. Iran. J. Biotechnol. Vol. 7. 2009. pp. 205-215.



How to Cite

Velasco B., R., Gil G., J. H., García P., C. M., & Durango R., D. L. (2012). Structural modification of trans-cinnamic acid using Colletotrichum acutatum. Revista Facultad De Ingeniería Universidad De Antioquia, (63), 20–29.