Improvement of micro-hardness and electrochemical properties of Al-4%Cu-0.5%Mg alloy by Ag addition


  • Reinaldo Correa Universidad de Antioquia
  • Héctor Sánchez Universidad de Antioquia
  • Jorge A. Calderón Universidad de Antioquia


Duraluminum alloy, heat treatment, phase transformations, microstructure, corrosion resistance, polarization curves


The base system of alloys Al-4% Cu-0. 5% Mg, known as the designation of duralumin 201, are very appreciated by the aerospace, partly automotive and industrial in general, for its great strength, high temperature and corrosion resistant. These kinds of alloys have excellent response to precipitation hardening. This study evaluates the effect of silver content in the microstructure, mechanical properties and corrosion resistance of the alloy. It was found that the addition of silver in the alloys led to a delay time of homogenization and accelerates the aging time, causing the precipitation of Guinier Preston zones and the consequent increase in hardness and improvement of the mechanical properties of alloys. Moreover, the addition of Ag to alloys Al-4% Cu-0.5% Mg gives a better resistance to corrosion, giving noble features and reducing the corrosion current in chloride aqueous media. The global control of the dissolution of the alloys Al-4% Cu-0.5% Mg-Ag will be given by the diffusion of oxygen from the bulk of the solution to the metal surface. The corrosion potential of alloys Al-4% Cu-0.5% Mg-Ag coincide with the pitting potential of the material (-0.62V), this makes the material not generate a passive layer and its dissolution is controlled purely by activation of the surface and the reaction rate of the cathodic reduction of oxygen.
= 10 veces | PDF (ESPAÑOL (ESPAÑA))
= 10 veces|


Download data is not yet available.


X. Y. Liu, Q. L. Pan, X. Fan, Y. B. He, W. B. Li, W. J. Liang. “Microstructural evolution of Al–Cu–Mg–Ag alloy during homogenization”. Journal of Alloys and Compounds. Vol. 484. 2009. pp. 790-794.

E. D. Howard. Tratado práctico de fundición. Ed. Aguilar. Madrid, España. 1962. pp. 121-138.

W. F. Smith. “Ciencia e ingeniería de los materiales”. 3ra. ed. Ed. Mc Graw Hill. Madrid. 2004. pp. 290-299.

J. A. González, Escudero, V. López, J. Simancas, M. Morcillo. “Durabilidad del aluminio en atmosferas de muy diferentes corrosividades. I. aluminio desnudo.” Revista de metalurgia Madrid. Vol. 40. 2004. pp. 259- 269.

T. Gerique, A. Brahmi, M. Lieblich, M. Torralba. “Aleaciones de Al-Cr-Zr para aplicaciones a altas temperaturas”. Revista de metalurgia Madrid. Vol. 34. 1998. pp. 358-373.

L. B. Ber, V. V. Teleshov, O. G. Ukolova. “Aluminum and high – temperatura allos. Phase composition and mechanical properties of wrought aluminum alloys of the sistem Al-Cu-Mg-Ag-Xi.” Revista Metal Science and Treatment. Vol. 50. 2008. pp. 220-227.

J. Moreno, V. M. López, H. J. Dorantes. “Endurecimiento por precipitación en aleaciones Al4%Cu- 0.5%Mg modificadas con Ag”. Sciencia et Technica. Vol. 36. 2007. pp. 959-963.

S. Muraishi, S. Kumai, A. Sato. “Stress- oriented nucleation of Ω phase plates in an Al-Cu-Mg-Ag alloy.” Philosophical Magazine A. Vol. 82. 2002. pp. 415-428.

S. P. Ringer, W. yeung, B. C. Muddle, I. J. Polmear. “Precipitation stability in Al-Cu-Mg-Ag alloys aged at high temperaturas”. Acta metalurgical et materialia. Vol. 42. 1994. pp. 1715-1725.

K. Raviprasad, C. R. Hutchinson, T. Sakurai, S. P. Ringer. “Precipitation processes in an Al-2.2Cu.1.5Mg (wt. %) alloy microalloyed with Ag and Si”. Acta materialia. Vol. 51. 2003. pp. 5037-5050.

V. V. Telesshov, D. A. Andreev, A. P. Golovleva. “Effect of chemical composition on the strength of alloy of the Al-Cu-Mg-Ag sistem after neating at 180- 210°C”. Metal Science and Heat tretment. Vol. 48. 2006. pp. 104-112.

S. Min, X. Daihong, Z. Fugin. “Effect of Ce on the termal stability of the Ω phase in an Al-Cu-Mg-Ag alloy”. Rare metals. Vol. 28. 2009. pp. 156-159.

Y. C. Chang, J. M. Howe. “Composition and stability of Ω phase in Al-Cu-Mg-Ag alloy.” Met. Trans. A. Vol. 24. 1993. pp. 1461-1470.

L. M. Wang, H. M. Flower. “Precipitation of Ω phase in 2024 and 2124 aluminum alloy.” Scripta Materialia. Vol. 41. 1999. pp. 391-396.

D. H. Xiao, J. N. Ding, S. P. Chen. “Effect of Cu content on the mechanical properties of an Al-Cu-MgAg alloy”. Journal of alloys and compounds. Vol. 343. 2002. pp. 77-78.

B. M. Muddle, G. J. Shiflet, I. J. Polmear. “The precipítate Ω phase in Al-Cu-Mg-Ag alloys”. Acta Metall. Mater. Vol. 37. 1989. pp. 777.

B. Skrotzki, G. J. Shiflet, E. A. Starke, Jr. “On the Effect of Stress on Nucleation and Growth of Precipitates in an Al-Cu-Mg-Ag Alloy”. Metallurgical and Materials Transactions A. Vol. 27. 1996. pp. 3431-3444.

D. A. Little, B. J. Connolly, J. R. Scully. “An electrochemical framework to explain the intergranular stress corrosion behavior in two Al–Cu–Mg–Ag alloys as a function of aging”. Corr. Science. Vol. 49. 2007. pp. 347-372

E. L. Rooy. Aluminum Company of America. “Aluminum and aluminum alloys”. ASM Handbook. Vol. 5. 2005. pp. 743- 757.

J. M. Sistiaga. Aleaciones de aluminio y de magnesio. Ed. Montecorvo. Madrid. 1963. pp. 81- 137.

D. A. Jones. Principles and Prevention Corrosion. 2nd . ed. Ed. Prentice-Hall, Inc. New Jersey. 1992. pp. 85- 86.

M. Pourbaix. Atlas of Electrochemical Equilibria in Aqueous Solutions. Ed. NACE. CEBELCOR. Houston. Texas. 1974. pp 168-175.



How to Cite

Correa, R., Sánchez, H., & Calderón, J. A. (2012). Improvement of micro-hardness and electrochemical properties of Al-4%Cu-0.5%Mg alloy by Ag addition. Revista Facultad De Ingeniería Universidad De Antioquia, (61), 19–28. Retrieved from