Evaluation of the Hydraulic Behaviour in a Double-Chamber Anaerobic Reactor (DCAR)

Authors

  • Nancy Rincón University of Zulia
  • Andres Galindo University of La Guajira
  • Jhonny Pérez University of La Guajira

DOI:

https://doi.org/10.17533/udea.redin.13537

Keywords:

double-chamber reactor, dispersion coefficient, hydraulic efficiency, dead zones

Abstract

In the organic load removal in a wastewater treatment system, biochemical processes and hydrodynamic aspects take place as characteristicsof the flow, mix regime, residence times and reactor geometry, otherwise, the conditions for non­ideal flow as by­passing, dead zones and internal recirculation affect their performance. This study deals with an evaluation of the hydraulic behavior of a double­chamber anaerobic reactor (DCAR) of 534.5L (chamber 1=305L and chamber 2=229.5L) as a technological innovation of the UASB reactors. The DCAR was fed with Maracaibo, Venezuela municipal wastewater; each chamber was inoculated with agranular, localbrewery sludge (20% v/v). The hydraulic evaluation was performed at the liquid phase and in operation, using Li+ (LiCl) as a tracer applied in an instantaneous way at the affluent at the theoretical hydraulic retention time (TRHt) of 6 hours; 3.4 in the chamber number 1 and 2.6 in chamber number 2. The DCAR described as a plugflow in both chambers and a hydraulic efficiency close to the unit (1), indicating an almost null presence of dead zones. The CDO (CDOT) of DCAR removalefficiency was kept in the range of 59.77% to 74.46% with an average of 68.26%. For chambers 1 and 2 the average efficiency was 60.4 and 20.94 with a biogas production (L/h) of 2.768 and 0.541 respectively.

|Abstract
= 193 veces | PDF (ESPAÑOL (ESPAÑA))
= 32 veces|

Downloads

Download data is not yet available.

Author Biographies

Nancy Rincón, University of Zulia

Faculty of Engineering. Department of Sanitary and Environmental Engineering (DISA).

Andres Galindo, University of La Guajira

Faculty of Engineering. Department of Sanitary and Environmental Engineering (DISA).

Jhonny Pérez, University of La Guajira

Faculty of Engineering. Department of Sanitary and Environmental Engineering (DISA).

References

J. Rodriguez, E. Foresti. A Novel Aerobic-Anoxic Biological Filter For Nitrogen Removal From UASB Reactor Effluent Using Biogas Compounds As Electron Donors For Denitrification. IX Taller Simposio Latinoamericano de Digestion Anaerobia Isla de Pascua, Chile. 19-23 de Octubre de 2008. pp. 213-222.

S. Oliveira, M. von Sperling. Performance And Reliability of Post-Treatment Options For The Anaerobic Treatment of Domestic Wastewater. IX Taller Simposio Latinoamericano de Digestion Anaerobia Isla de Pascua. Chile. 19-23 de Octubre de 2008. pp. 273-281.

C. Chernicharo, S. Nascimento. “Feasibility of a pilot-scale UASB/trickling filter system for domestic sewage treatment”. Water Science Technology. Vol. 44. 2001. pp. 221-228.

A. Tawfik, A. Klapwijk, E. Gohary, G. Lettinga. “Potentials of using a rotating biological contactor (RBC) for post-treatment of anaerobically pre-treated domestic wastewater”. Biochemical engeneering journal. Vol. 25. 2005. pp. 89-98.

P. González, R. Chamy, P. Paola. “Tratamiento Anaerobio De Aguas Residuales Urbanas en Reactores de una y dos Fases a Baja Temperatura”. Revista AIDIS de Ingeniería y Ciencias Ambientales, desarrollo y practica. Vol. 1. 2007. pp. 614-622.

X. Hai-Lou, W. Jing-Yuan, Z. Hua, T. JooHwa. “Feasibility study on the operation of uasb reactor treating acidified food waste”. Journal of Environmental Science and Health. Part A—Toxic/ Hazardous Substances & Environmental Engineering. Vol. A37. 2002. pp. 1757-1764.

R. Borja, A. Martin, E. Sancheza, B. Rincón, F. Raposo. “Kinetic modelling of the hydrolysis, acidogenic and methanogenic steps in the anaerobic digestion of twophase olive pomace (TPOP)”. Process Biochemistry. Vol. 40. 2005. pp. 1841-1847.

J. López, J. Morgan, A. Noyola. Arranque de reactores anaerobios industriales: Dos casos de estúdio. Instituto de Ingeniería, Universidad Nacional Autónoma de México. [on-line]. Disponible en http://www.cepis.org.pe/bvsaidis/aresidua/mexicona/R-0059.pdf. Fecha de consulta diciembre 20 de 2010.

V. Diamantis, A. Aivasidis. “Two-stage UASB design enables activated-sludge free treatment of easily biodegradable wastewater”. Bioprocess Biosyst Engineering. Vol. 33. 2010. pp. 287-292.

D. Bhattacharyya, K. Singh. “Treatment of textile dyes in two-phase and single-phase anaerobic bio-treatment systems”. Water Science & Technology. Vol. 57. 2008. pp. 863-868.

V. Diamantis, A. Aivasidis. “Comparison of singleand two-stage UASB reactors used for anaerobic treatment of synthetic fruit wastewater”. Enzyme and Microbial Technology. Vol. 42. 2007. pp. 6-10.

J. Álvarez, E. Armstrong, M . Gomez, M. Soto. “Anaerobic treatment of low-strength municipal wastewater by a two-stage pilot plant under psychrophilic conditions”. Bioresource Technology. Vol.99. 2008. pp. 2-10.

M. Peña, D. Mara, G. Avella. “Dispersion and treatment performance analysis of an UASB reactor under different hydraulic loading rates”. Water research. Vol. 40. 2006. pp. 445-452.

E. Saenz. Separación de Etapas en el Tratamiento Anaerobio de Efluentes Con Reactores UASB. Universidad País Vasco: Departamento Ingeniería Quimica y del Medio Ambiente. [on-line]. Disponible en http://www.cibernetia.com/tesis_es/ciencias_tecnologicas/ingenieria. Fecha de consulta julio 20 de 2010.

P. Heertjes, R. Van der Meer. “Dynamics of liquid in an up-flow reactor used for anaerobic treatment of wastewater”. Biotechnol. Bioeng. Vol. 20. 1978. pp. 1577-1594.

W. Bolle, J. Van Breugel, G.van Eybergen, N. Kossen, W. Van Gils. “An integrated dynamic model for the UASB reactor”. Biotechnology and Bioengineering. Vol. 28. 1986. pp. 1621-1636.

G. Avella. Evaluación del comportamiento hidrodinámico de un reactor UASB y su influencia en la remoción de materia orgánica. Tesis de postgrado para optar al título de magíster en ingeniería sanitaria y ambiental. Universidad del Valle, Facultad de ingeniería. Cali, Colombia. 2001. pp. 136.

M. Wu, R. Hickey. “Dynamic model for UASB reactor including reactor hydraulics, reaction and diffusion”. Journal of Environmental Engineering. Vol. 123. 1997. pp. 244-252.

C. Lara, J. Díaz, A. Bona. “Evaluación hidráulica de un reactor UASB de compartimientos”. Seminario Internacional: Tratamiento y Postratamiento de Aguas Residuales. Universidad de Boyacá. 2000. pp. 255273.

K. De Carvalho, M. Salgado, F. Passig, E. Pires. Avaliação hidrodinâmica de reator uasb submetido à variação cíclica de vazão. IX taller y simposio latinoamericano de digestión anaerobia. Chile. 1-23 de octubre de 2008. pp. 761-765.

R. Van der Meer. “Mathematical description of anaerobic treatment of Wastewater in Upflow Reactors”. Biotechnology and Bioengineering. Vol. 25. 1983. pp. 2531-2556.

T. Ren, Y. Mua, H. Yu, H. Harada, Y. Li. “Dispersion analysis of an acidogenic UASB reactor.” Chemical Engineering Journal. Vol. 42. 2008. pp.182 - 189

J. Morgan, B. Jimenez, A. Noyola. “Tracer studies in laboratory and pilot scale UASB reactor.” Envoiromental Technology. Vol. 18. 1997. pp. 817825.

A. Singhal, G. James, V. Praveen, K. Ramachandran. “Axial dispersion model for upflow anaerobic sludge blanket reactors”. Biotechnology Progress. Vol. 14. 1998. pp. 645–648.

Y. Zeng, S. Mu, S. Lou, B. Tartakovsky, S. Guiot, P. Wu. “Hydraulic modeling and axial dispersion analysis of UASB reactor”. Biochemical Engineering Journal. Vol. 25. 2005. pp.113-123.

APHA, AWWA, WEF. Standard Metdods for the examnination of wáter. 20a . ed. Ed. American Public Health Association/American Water Works Association/Water Environment Federation. Washington D.C. 1998. pp. 1-1325.

J. Pérez, N. Rincón, N. Bracho. “Evaluación de la Adsorción de Rodamina WT, Litio y cloruro en reactores por carga inoculados con lodo anaerobio”. Rev. Fac. Ing. Univ. Antioquia. No 58. 2011. pp. 74-84.

M. González, J. Saldarriaga “Remoción biológica de materia orgánica, nitrógeno y fósforo en un sistema tipo anaerobio, anóxico, aerobio”. Rev. Escuela Ingeniería Antioquia. No 10. 2008. pp. 45-53.

O. Levenspiel. Chemical reaction engineering. 2da ed. Ed. John Wiley and Sons. New York (USA). 1999. pp. 668.

K. Elgeti. “A new equation for correlating a pipe flow a reactor with a cascade of mixed reactors”. Chemical engineering Science. Vol. 51. 1996. pp. 5077-5080.

S. Kim, C. Kim. “Axial dispersion characteristics of three phase fluidized beds”. Journal of chemical engineering of Japan. Vol. 16. 1983. pp. 172-177.

G. Aldana. Hydraulic behaviour and performance improvement of waste stabilization ponds using a computational fluid dynamic and physical model. Tesis doctoral. Para optar al título de Ph.D Dissertation University of Surrey. England. 2004. pp. 290.

D. Jeison, R. Chamy. “Novel technique for measuring the size distribution of granules from anaerobic reactors for wastewater treatment”. Biotechnol. Technol. Vol. 12. 1998. pp. 659-662.

X. Hai-Lou, T. Joo-Hwa. “Preserved granular sludge for inoculation of new UASB reactors”. Journal of Environmental science and health, part A: toxic/ hazardous substances and environmental Engineering. Vol. 36. 2001. pp. 1747-1756.

M. Bhunia, M. Ghangrekar. “Required minimum granule size in UASB reactor and characteristics variation with size”. Bioresource Technology.Vol. 98. 2007. pp. 994-999.

J. Romero. Tratamiento de aguas residuales teoría y principio de diseño. 4 ed. Ed. Escuela Colombiana de Ingeniería. Bogotá (Colombia). 2001. pp. 1248.

A. Haandel, G. Lettinga. “Tratamento Anaeróbio de Esgotos: Um Manual para Regiões de Clima Quente”. Ed. Campina Grande. (Brasil). 1994. pp. 225.

J. Campos. Tratamento de esgotos sanitários por processo anaeróbio e disposição controlada no solo. Rio de Janeiro: Pograma de Pesquisa em Saneamento Basico (PROSAB). 1999. pp. 464.

L. Masterton, E. Slowinski. Química general superior. 6ª ed. Ed. McGraw-Hill. Madrid (España). 1990. pp. 702.

V. Penaud, J. Delgenes, M. Torrijos, R. Moletta, B. Vanhoutte, P. Cans. “Definition of optimal conditions for the hidrolysis and acidogenesis of a pharmaceutical microbial biomass”. Process Biochemistry. Vol. 32. 1997. pp. 515-521.

I. Maharaj, P. Elefsiniotis. “The role of HRT and low temperature on the acidphase anaerobic digestion of municipal and industrial wastewaters”. Bioresource Technology. Vol. 76. 2001. pp. 191-197.

Z. Sawajneh, A. Al-Omari, M. Halalsheh. “Anaerobic treatment of strong sewage by a two stage system of AF and UASB reactors”. Water Science & Technology. Vol. 61. 2010. pp. 2399-2405.

J. Malina, F .Pohland. Design of anaerobic for the treatment of industrial and municipal wastes. Ed. Technamic Publishing Compañy. USA. 1992. pp. 213.

M. Ghangrekar. S. Asolekarb, S. Joshic. “Characteristics of sludge developed under different loading conditions during UASB reactor start-up and granulation”. Water Research. Vol. 39. 2005. pp. 11231133.

J. Pérez. Modelo de dispersión axial de un reactor anaerobio de flujo ascendente (RAFA) utilizando aguas residuales municipales. Tesis doctoral, Facultad de ingeniería, Universidad del Zulia. Venezuela. 2010. pp. 197.

S. Lou, B.Tartakovsk, Y. Zeng, P. Wu, S. Guiot. “Fluorescence-based monitoring of tracer and substrate distribution in an UASB reactor”. Chemosphere. Vol. 65. 2006. pp. 1212-1220.

K. De Carvalho. Reposta dinâmica de reator UASB em escala piloto submetido a cargas orgânicas e hidráulicas cíclicas: modelos matemáticos e resultados experimentais. Tesis de doctorado. Escuela ingeniería de São Carlo. Brasil. 2006. pp. 191.

M. Gómez. Measurement and correlation of axial dispersion coefficient in a bubble column with a nonnewtonian liquid phase. Tesis doctor of philosophy in chemical engineering. University of Puerto Rico Mayagüez campus. 2006. pp. 272

Published

2012-11-15

How to Cite

Rincón, N., Galindo, A., & Pérez, J. (2012). Evaluation of the Hydraulic Behaviour in a Double-Chamber Anaerobic Reactor (DCAR). Revista Facultad De Ingeniería Universidad De Antioquia, (61), 53–63. https://doi.org/10.17533/udea.redin.13537

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 > >> 

You may also start an advanced similarity search for this article.