Implementing an composition architecture for an online game software

  • Jaime Alberto Guzmán-Luna Universidad Nacional de Colombia
  • Ingrid Durley Torres-Pardo Universidad Nacional de Colombia
  • Arlex David Martínez Universidad Nacional de Colombia

Abstract

This paper presents architecture for Web service composition, in which a plan of composition is constructed based on an agent planning, which can be executed in a concurrent way during its composition in order to estimate the following action to be executed instead of preparing a complete plan which frequently would be invalidated. This feature is invaluable when it comes to addressing problems in real time. Specifically we propose a test domain online games software, called ENVIRO.
|Abstract
= 7 veces | PDF (ESPAÑOL (ESPAÑA))
= 6 veces|

Downloads

Download data is not yet available.

References

M. Ghallab, D. Nau, P. Traverso. Automated Task Planning. Theory and Practice. Ed. Morgan Kaufmann. Trento (Italy). 2004. pp.449 -461

OWL-XPlan online: http://projects.semWebcentral. org/projects/owls-xplan/. Accessed in November 2010.

J. Peer. A POP-based Replaning Agent for Automatic Web Service Composition. The Semantic Web: Research and Applications. Second European Semantic Web Conference, Heraklion. Crete, Greece. May 29 - June 1, 2005. pp. 1-14.

E. Sirin, D. Martin, B. Mark, M. Drew McDermott, S. McIlraith, P. Massimo, S. Katia, M. Deborah, S. Naveen Srinivasa. “Bringing Semantics to Web services with OWL-S”. World Wide Web Journal Special Issue on Web Services: Theory and Practice. 2006. pp. 26-40.

C. Pelachaud, J. C. Karpoutzis, D. Pelé, Martin, G. Chollet. Intelligent Virtual Agents. 7th International Conference. IVA 2007. Paris, France. September 17- 19, 2007. pp. 47-53.

R. P. Bonasso, R. J. Firby, E. Gat, D. Kortenkamp, D. Miller, M. Slack. “Experiences with an Architecture for Intelligent, Reactive Agents”. Journal of Experimental and Theoretical Artificial Intelligence. Vol. 9(1). 1997. pp. 237-256.

O. Sapena, E. Onaindía. “Handling Numeric Criteria in Relaxed Planning Graphs”. Advances in Artificial Intelligence. IBERAMIA. 2004. pp 114-123.

OWL-S Coalition: OWL Web Services 1.1. Online: http://www.daml.org/services/owls Accessed in November 2010.

XSPDDL. Online: http://67.223.239.230/xspddl. Accessed in Octuber 2010.

M. Dean, G. Schreiber, eds. OWL Web Ontology Language Reference, W3C Recommendation. Online: http://www.w3.org/TR/owl-ref/. Accessed in february 2004.

C. Bussler, A. Maedche, D. Fensel. Conceptual Architecture for Semantic Web Enabled Web Services. Memories Proceedings of the First International Semantic Web Conference on the Semantic Web. June 9 de 2002. pp 12-18

WSML. Working Group: Web service Modeling. Online: Language. http://www.wsmo.org/wsml/. Accessed in November 2010.

WSDL-S. Web Service Semantics WSDL-S, online: http://lsdis.cs.uga.edu/library/download/WSDL-SV1. pdf. Accessed in Octuber 2010.

PDDL: Planning Domain Definition Language online: http://www.ida.liu.se/~TDDA13/labbar/planning/ 2003/writing.html. Accessed in June 2010.

S. J. Russell, P. Norvig. Artificial Intelligence: A Modern Approach. 2nd ed. Ed. Pearson Education. Spain. 2004 pp 37-42.

Published
2012-11-15
How to Cite
Guzmán-Luna J. A., Torres-Pardo I. D., & Martínez A. D. (2012). Implementing an composition architecture for an online game software. Revista Facultad De Ingeniería Universidad De Antioquia, (61), 158-169. Retrieved from https://revistas.udea.edu.co/index.php/ingenieria/article/view/13547