Caracterización dinámica de sensores de presión utilizando el principio de la botella de mariotte

Autores/as

  • Mauricio González Betancourt Universidad Nacional de Colombia
  • Juan S. Giraldo Universidad del Valle

DOI:

https://doi.org/10.17533/udea.redin.13689

Palabras clave:

calibración de sensores, presión, flujo en canales, modelos hidráulicos, calibración dinámica

Resumen

Se presenta una metodología para evaluar las características dinámicas de los sensores de presión implementados en canales o modelos hidráulicos, la cual se basa en el análisis de las señales de entrada rampa y escalón en el dominio del tiempo, que permiten definir el rango útil en frecuencia y en amplitud de los sensores. Las señales son obtenidas a partir de la apertura y el cierre de válvulas presentes en un generador de presión aperiódico, diseñado bajo el principio de la botella de Mariotte.

|Resumen
= 606 veces | PDF
= 196 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Mauricio González Betancourt, Universidad Nacional de Colombia

Facultad de Minas, sede Medellín.

Juan S. Giraldo, Universidad del Valle

Facultad de Ingeniería, Sede Meléndez.

Citas

Z. Zhang, W. Wang, W. Wang, D. Wang. Uncertainty of Measurement of Transient Pressure. XIX IMEKO World Congress Fundamental and Applied Metrology. Lisbon, Portugal. 2009. pp. 6-11.

Tatone G. Selección de Transductores para la Medición de Presiones Fluctuantes. XXIV Congreso Latinoamericano de Hidráulica. Punta del Este, Uruguay. 2010. pp. 5-9.

The Instrumentation, Systems, and Automation Society (ISA 37.16.01). A Guide for the Dynamic Calibration of Pressure Transducers. 1st ed. Ed. Instrumentation, Systems, and Automation Society. Research Triangle Park. North Carolina, USA. 2002. pp.13-38.

A. Diniz, A. Oliveira, J. Vianna, F. Neves. Dynamic Calibration Methods for Pressure Sensors and Development of Standard Devices for Dynamic Pressure. XVIII Imeko World Congress Metrology. Rio de Janeiro, Brazil. 2006. pp. 17-22.

J. Zakrzewski, K. Wróbel. “Dynamic Calibration of Low-Range Silicon Pressure Sensors”. IEEE Transactions on Instrumentation and Measurement. Vol. 51. 2002. pp.1358-1362. DOI: https://doi.org/10.1109/TIM.2002.808030

G. Kirouac. Effect of Pressure Transmission Lines on the Frequency Response of Pressure Transducers. Technical Report. Lockheed Martin Corporation, Schenectady. New York, USA. 2002. pp. 2-7.

T. Stavros. Measurement In Fluid Mechanics. 1ar ed. Ed. Cambridge University Press. New York, USA. 2005. pp. 3-54.

J. Damion “Means of Dynamic Calibration for Pressure Transducers”. Journal Metrologia. Vol 30. 1993. pp. 743-746. DOI: https://doi.org/10.1088/0026-1394/30/6/038

H. Himelblau, A. PierSol, J. Wise. M. Grundvig. Handbook for Dynamic Data Acquisition and Analysis. 1ar ed. Ed. Institute of Environmental Sciences and Technology. Mount Prospect, Illinois, USA. 1994. pp. 3-92.

B. C. Kuo. Sistemas de Control. Automático. 7a ed. Ed. Prentice Hall Hispanoamericana S.A. Naucalpan de Juárez, México. 1996. pp.77-117, 361-402.

K. Ogata. Ingeniería de Control Moderna. 3ra ed. Ed. Prentice Hall. Naucalpan de Juárez. México. 1998. pp.134-207.

G. Harman. Sensor Technology Handbook. 1ar ed. Ed. Jon S. Wilson. Elsevier. Burlington, MA. USA. 2005. pp.411-433.

Joint Committee for Guides in Metrology (JCGM). Evaluation of Measurement Data - Guide to the Expression of Uncertainty in Measurement. 1ar ed. Ed. by Working Group of the Joint Committee for Guides in Metrology (JCGM/WG 1). 2008. pp. 3-24. Disponible en: http://www.bipm.org/en/publications/guides/gum.html. Consultado: Agosto de 2012

R. Figliola, D. Beasley. Theory and Design for Mechanical Measurements. 5th ed. Ed. John Wiley & Sons. New Jersey, USA. 2011. pp. 161-200.

S. Bell. A Beginner’s Guide to Uncertainty of Measurement. Guide N° 11”. National Physical Laboratory. Teddington, UK. 1999. pp. 9-40.

J. Lally, D. Cummiskey. Dynamic Pressure Calibration. Technical Note No 15. PCB Piezotronics, New York, USA. 2003. pp.1-4.

H. Newhall, A. Juhasz, D. Bullock. “Dynamic Pressure Calibrator”. U.S. Patent. H000206. A. 3 February. 1987. pp.1-10.

K. Chung. Shock Tube Calibration of a Fast Response Pressure Transducer. Thesis to MSc. University of Texas at Arlington. Texas, USA. 1989. pp. 1-44. DOI: https://doi.org/10.2514/6.1990-1399

S. Wang, T. Tsunga, L. Hana. “Method of Generating a Hydraulic Step Wave with a Short Rise Time”. Measurement. Vol. 43. 2010. pp. 935-940. DOI: https://doi.org/10.1016/j.measurement.2010.03.009

T. Kobata, A. Ooiwa. “Method of Evaluating Frequency Characteristics of Pressure Transducers Using Newly Developed Dynamic Pressure Generator”. Sensors and Actuators A: Physical. Vol. 79. 2000. pp. 97-101. DOI: https://doi.org/10.1016/S0924-4247(99)00271-X

H. Chang, M. Kao, T. Tsung, J. Wu. “An Innovative Technology for Measuring the Dynamic Characteristics of Pressure Sensors”. Materials Science Forum. Vol. 505- 507. 2006. pp. 1057-1062. DOI: https://doi.org/10.4028/www.scientific.net/MSF.505-507.1057

L. Tomasi, E. Wieser, E. Baruah, D. Collomb, F. Jolly, G. Krötz, S. Storm, P. Jänker, E. Obermeier. Development of a New Piezoelectric Dynamic Pressure Generator for High Pressure Periodic and Aperiodic Calibration. XVII IMEKO World Congress Metrology in the 3rd Millennium. Dubrovnik, Croatia. 2003. pp. 1995-1998.

J. Holmes, R. Lewis. The Dynamic Response of Pressure-Measurement Systems. 9th. AFMC, Australasian Fluid Mechanics Conference. Auckland, New Zealand. 2009. pp. 537- 540.

R. Khatsuria. Hydraulics of Spillways and Energy Dissipators. Georgia Institute of Technology. 1st ed. Ed. Marcel Dekker. Atlanta, USA. 2005. pp. 411-426. DOI: https://doi.org/10.1201/9780203996980-1

C. Bowers, J. Toso. “Karnafuli Project: Model Studies of Sapillway Damage”. J. Hydraulic Engineering, ASCE. Vol. 114. 1988. pp. 469-483. DOI: https://doi.org/10.1061/(ASCE)0733-9429(1988)114:5(469)

G. Grimvall. Brainteaser Physics. 1ar ed. Ed. The Johns Hopkins University Press. Baltimore. USA. 2007. pp. 33-53. DOI: https://doi.org/10.1353/book.3292

J. Maroto, J. Dios, F. de las Nieves. “Use of a Mariotte Bottle for the Experimental Study of the Transition from Laminar to Turbulent Flow”. Am. J. Phys. Vol.70. 2002. pp. 698-701. DOI: https://doi.org/10.1119/1.1469038

A. Strafaci. Advanced Water Distribution Modeling and Management. 1st ed. Ed. Haestad Press. Haestad Methods. Waterbury, USA. 2003. pp. 577-583.

T. Maudie, B. Tucker. Reliability Issues for Silicon Pressure Sensors. 8th ed. Ed. Sensor Device Data Book Motorola. Denver, USA. 2003. pp. 3-9.

A. Reodique. AN1646, Noise Considerations for Integrated Pressure Sensors. 1ar ed. Ed. Motorola. Denver, USA. 2005. pp. 2-6.

V. Stankevič, Č. Šimkevičius. “Use of a Shock Tube in Investigations of Silicon Micromachined Piezoresistive Pressure Sensors”. Sensors and Actuators A: Physical. Vol. 86. 2000. pp. 58-65. DOI: https://doi.org/10.1016/S0924-4247(00)00432-5

M. Wilkinson, M. Outram. “Principles of Pressure Transducers, Resonance, Damping and Frequency Response”. Anaesthesia & Intensive Care Medicine. Vol. 10. 2008. pp. 102-105. DOI: https://doi.org/10.1016/j.mpaic.2008.10.007

T. Caughey, M. Kelly. “Effect of Damping on the Natural Frequencies of Linear Dynamic Systems”. J. of the Acoustical. Vol. 33. 1961. pp. 1458-1461. DOI: https://doi.org/10.1121/1.1908470

Descargas

Publicado

2014-02-12

Cómo citar

González Betancourt, M., & Giraldo, J. S. (2014). Caracterización dinámica de sensores de presión utilizando el principio de la botella de mariotte. Revista Facultad De Ingeniería Universidad De Antioquia, 71(71), 202–212. https://doi.org/10.17533/udea.redin.13689