Dynamic characterization of pressure sensors using the principle of mariotte’s bottle
DOI:
https://doi.org/10.17533/udea.redin.13689Keywords:
sensor calibration, pressure, channels flow, hydraulic models, dynamic metrologyAbstract
A methodology to evaluate the dynamic characteristics of pressure sensors used in channels or hydraulic models is presented. This is based on the analysis of the ramp and step signals in the time domain for defining the useful range in amplitude and frequency of the sensors. The signals are obtained from the opening and closing of valves present in an aperiodic pressure generator designed with the principle of the Mariotte ́s bottle.
Downloads
References
Z. Zhang, W. Wang, W. Wang, D. Wang. Uncertainty of Measurement of Transient Pressure. XIX IMEKO World Congress Fundamental and Applied Metrology. Lisbon, Portugal. 2009. pp. 6-11.
Tatone G. Selección de Transductores para la Medición de Presiones Fluctuantes. XXIV Congreso Latinoamericano de Hidráulica. Punta del Este, Uruguay. 2010. pp. 5-9.
The Instrumentation, Systems, and Automation Society (ISA 37.16.01). A Guide for the Dynamic Calibration of Pressure Transducers. 1st ed. Ed. Instrumentation, Systems, and Automation Society. Research Triangle Park. North Carolina, USA. 2002. pp.13-38.
A. Diniz, A. Oliveira, J. Vianna, F. Neves. Dynamic Calibration Methods for Pressure Sensors and Development of Standard Devices for Dynamic Pressure. XVIII Imeko World Congress Metrology. Rio de Janeiro, Brazil. 2006. pp. 17-22.
J. Zakrzewski, K. Wróbel. “Dynamic Calibration of Low-Range Silicon Pressure Sensors”. IEEE Transactions on Instrumentation and Measurement. Vol. 51. 2002. pp.1358-1362. DOI: https://doi.org/10.1109/TIM.2002.808030
G. Kirouac. Effect of Pressure Transmission Lines on the Frequency Response of Pressure Transducers. Technical Report. Lockheed Martin Corporation, Schenectady. New York, USA. 2002. pp. 2-7.
T. Stavros. Measurement In Fluid Mechanics. 1ar ed. Ed. Cambridge University Press. New York, USA. 2005. pp. 3-54.
J. Damion “Means of Dynamic Calibration for Pressure Transducers”. Journal Metrologia. Vol 30. 1993. pp. 743-746. DOI: https://doi.org/10.1088/0026-1394/30/6/038
H. Himelblau, A. PierSol, J. Wise. M. Grundvig. Handbook for Dynamic Data Acquisition and Analysis. 1ar ed. Ed. Institute of Environmental Sciences and Technology. Mount Prospect, Illinois, USA. 1994. pp. 3-92.
B. C. Kuo. Sistemas de Control. Automático. 7a ed. Ed. Prentice Hall Hispanoamericana S.A. Naucalpan de Juárez, México. 1996. pp.77-117, 361-402.
K. Ogata. Ingeniería de Control Moderna. 3ra ed. Ed. Prentice Hall. Naucalpan de Juárez. México. 1998. pp.134-207.
G. Harman. Sensor Technology Handbook. 1ar ed. Ed. Jon S. Wilson. Elsevier. Burlington, MA. USA. 2005. pp.411-433.
Joint Committee for Guides in Metrology (JCGM). Evaluation of Measurement Data - Guide to the Expression of Uncertainty in Measurement. 1ar ed. Ed. by Working Group of the Joint Committee for Guides in Metrology (JCGM/WG 1). 2008. pp. 3-24. Disponible en: http://www.bipm.org/en/publications/guides/gum.html. Consultado: Agosto de 2012
R. Figliola, D. Beasley. Theory and Design for Mechanical Measurements. 5th ed. Ed. John Wiley & Sons. New Jersey, USA. 2011. pp. 161-200.
S. Bell. A Beginner’s Guide to Uncertainty of Measurement. Guide N° 11”. National Physical Laboratory. Teddington, UK. 1999. pp. 9-40.
J. Lally, D. Cummiskey. Dynamic Pressure Calibration. Technical Note No 15. PCB Piezotronics, New York, USA. 2003. pp.1-4.
H. Newhall, A. Juhasz, D. Bullock. “Dynamic Pressure Calibrator”. U.S. Patent. H000206. A. 3 February. 1987. pp.1-10.
K. Chung. Shock Tube Calibration of a Fast Response Pressure Transducer. Thesis to MSc. University of Texas at Arlington. Texas, USA. 1989. pp. 1-44. DOI: https://doi.org/10.2514/6.1990-1399
S. Wang, T. Tsunga, L. Hana. “Method of Generating a Hydraulic Step Wave with a Short Rise Time”. Measurement. Vol. 43. 2010. pp. 935-940. DOI: https://doi.org/10.1016/j.measurement.2010.03.009
T. Kobata, A. Ooiwa. “Method of Evaluating Frequency Characteristics of Pressure Transducers Using Newly Developed Dynamic Pressure Generator”. Sensors and Actuators A: Physical. Vol. 79. 2000. pp. 97-101. DOI: https://doi.org/10.1016/S0924-4247(99)00271-X
H. Chang, M. Kao, T. Tsung, J. Wu. “An Innovative Technology for Measuring the Dynamic Characteristics of Pressure Sensors”. Materials Science Forum. Vol. 505- 507. 2006. pp. 1057-1062. DOI: https://doi.org/10.4028/www.scientific.net/MSF.505-507.1057
L. Tomasi, E. Wieser, E. Baruah, D. Collomb, F. Jolly, G. Krötz, S. Storm, P. Jänker, E. Obermeier. Development of a New Piezoelectric Dynamic Pressure Generator for High Pressure Periodic and Aperiodic Calibration. XVII IMEKO World Congress Metrology in the 3rd Millennium. Dubrovnik, Croatia. 2003. pp. 1995-1998.
J. Holmes, R. Lewis. The Dynamic Response of Pressure-Measurement Systems. 9th. AFMC, Australasian Fluid Mechanics Conference. Auckland, New Zealand. 2009. pp. 537- 540.
R. Khatsuria. Hydraulics of Spillways and Energy Dissipators. Georgia Institute of Technology. 1st ed. Ed. Marcel Dekker. Atlanta, USA. 2005. pp. 411-426. DOI: https://doi.org/10.1201/9780203996980-1
C. Bowers, J. Toso. “Karnafuli Project: Model Studies of Sapillway Damage”. J. Hydraulic Engineering, ASCE. Vol. 114. 1988. pp. 469-483. DOI: https://doi.org/10.1061/(ASCE)0733-9429(1988)114:5(469)
G. Grimvall. Brainteaser Physics. 1ar ed. Ed. The Johns Hopkins University Press. Baltimore. USA. 2007. pp. 33-53. DOI: https://doi.org/10.1353/book.3292
J. Maroto, J. Dios, F. de las Nieves. “Use of a Mariotte Bottle for the Experimental Study of the Transition from Laminar to Turbulent Flow”. Am. J. Phys. Vol.70. 2002. pp. 698-701. DOI: https://doi.org/10.1119/1.1469038
A. Strafaci. Advanced Water Distribution Modeling and Management. 1st ed. Ed. Haestad Press. Haestad Methods. Waterbury, USA. 2003. pp. 577-583.
T. Maudie, B. Tucker. Reliability Issues for Silicon Pressure Sensors. 8th ed. Ed. Sensor Device Data Book Motorola. Denver, USA. 2003. pp. 3-9.
A. Reodique. AN1646, Noise Considerations for Integrated Pressure Sensors. 1ar ed. Ed. Motorola. Denver, USA. 2005. pp. 2-6.
V. Stankevič, Č. Šimkevičius. “Use of a Shock Tube in Investigations of Silicon Micromachined Piezoresistive Pressure Sensors”. Sensors and Actuators A: Physical. Vol. 86. 2000. pp. 58-65. DOI: https://doi.org/10.1016/S0924-4247(00)00432-5
M. Wilkinson, M. Outram. “Principles of Pressure Transducers, Resonance, Damping and Frequency Response”. Anaesthesia & Intensive Care Medicine. Vol. 10. 2008. pp. 102-105. DOI: https://doi.org/10.1016/j.mpaic.2008.10.007
T. Caughey, M. Kelly. “Effect of Damping on the Natural Frequencies of Linear Dynamic Systems”. J. of the Acoustical. Vol. 33. 1961. pp. 1458-1461. DOI: https://doi.org/10.1121/1.1908470
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.