Definición de un Ciclo Típico de Conducción de un taxi eléctrico en una ciudad Andina

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20240728

Palabras clave:

taxi eléctrico, consumo de energía, ciclo típico de conducción

Resumen

Esta investigación tiene como objetivo definir un Ciclo Típico de Conducción (TDC) de un taxi eléctrico en Loja, Ecuador, una ciudad andina intermedia, considerando la unidad en servicio. En primera instancia, la velocidad, posición del taxi, corriente y voltaje de la batería se adquieren en tiempo real a través del puerto OBDII del KIA SOUL EV, utilizando un dispositivo registrador de datos a una frecuencia de muestreo de 1 Hz. Las variables se leen y almacenan utilizando un código de programa desarrollado en Labview. Además, se registran el inicio y el final de los viajes. Se realiza el monitoreo del taxi durante un mes, y se registra la masa variable de la unidad en servicio; se consideran los efectos del perfil de pendiente. Aplicando la teoría fundamental de la dinámica vehicular se obtiene, en Matlab Simulink, el consumo de energía de tracción del taxi; el TDC se define aplicando las Diferencias Mínimas Ponderadas, cuyos parámetros característicos son las energías de las diferentes fuerzas que se oponen al movimiento del vehículo. El taxi realizó 660 viajes en todo el mes, lo que equivale a un promedio del 54% de la energía de tracción; el resto de la energía, el taxi circuló sin usuarios. El TDC corresponde al viaje 5, del día 11, con un consumo de energía de tracción de 0.57 kWh, donde el 49.48% está asociado a la resistencia por inercia.

|Resumen
= 174 veces | PDF (ENGLISH)
= 63 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Jairo Castillo-Calderón, Universidad Nacional de Loja

Scientific Experiences in Mobility, Vehicles and Transport (eX-MoVeT) research group, Director de carrera de Ingeniería Automotriz, Facultad de la Energía, las Industrias y los Recursos Naturales no Renovables.

Daniel Cordero-Moreno, Universidad del Azuay

PhD. Engineering Sciences. Research centre and  Atomotive Engineering development ERGON, Technology and Science Department

Efrén Esteban Fernández-Palomeque, Universidad del Azuay

PhD Electronic Engineering. Research centre and  Atomotive Engineering development ERGON, Technology and Science Department

Byron Solórzano-Castillo, Universidad Nacional de Loja

Magister Mechanical Engineering. Professor, Electromechanical Engineering

Pablo Rafael Jaramillo-Merino, Universidad Nacional de Loja

Automotive Mechanical Engineer

Citas

X. Zhang, Y. Zou, J. Fan, and H. Guo, “Usage pattern analysis of beijing private electric vehicles based on real-world data,” Energy, vol. 167, Jan. 2019. [Online]. Available: https://doi.org/10.1016/j.energy.2018.11.005

Y. Zou, S. Wei, F. Sun, X. Hu, and Y. Shiao, “Large-scale deployment of electric taxis in beijing: A real-world analysis,” Energy, vol. 100, Apr. 2016. [Online]. Available: https://doi.org/10.1016/j.energy.2016.01.062

S. Sharma, A. K. Panwar, and M. M. Tripathi, “Storage technologies for electric vehicles,” J. Traffic Transp. Eng. (English Ed.), vol. 7, no. 3, Jun. 2020. [Online]. Available: https://doi.org/10.1016/j.jtte.2020.04.004

H. Achour and A. G. Olabi, “Driving cycle developments and their impacts on energy consumption of transportation,” Journal of Cleaner Production, vol. 112, no. 2, Jan. 2016. [Online]. Available: https://doi.org/10.1016/j.jclepro.2015.08.007

M. Giraldo, L. F. Quirama, J. I. Huertas, and J. E. Tibaquirá, “The effect of driving cycle duration on its representativeness,” World Electr. Veh. J., vol. 12, no. 4, Oct. 2021. [Online]. Available: https://doi.org/10.3390/wevj12040212

H. Gong, Y. Zou, Q. Yang, J. Fan, F. Sun, and D. Goehlich, “Generation of a driving cycle for battery electric vehicles: A case study of beijing,” Energy, vol. 150, May. 2018. [Online]. Available: https://doi.org/10.1016/j.energy.2018.02.092

L. Berzi, M. Delogu, and M. Pierini, “Development of driving cycles for electric vehicles in the context of the city of florence,” Transportation Research Part D: Transport and Environment, vol. 47, Aug 2016. [Online]. Available: https://doi.org/10.1016/j.trd.2016.05.010

M. Knez, T. Muneer, B. Jereb, and K. Cullinane, “The estimation of a driving cycle for celje and a comparison to other european cities,” Sustainable Cities and Society, vol. 11, Feb. 2014. [Online]. Available: https://doi.org/10.1016/j.scs.2013.11.010

G. Wager, J. Whale, and T. Braunl, “Driving electric vehicles at highway speeds: The effect of higher driving speeds on energy consumption and driving range for electric vehicles in australia,” Renewable and Sustainable Energy Reviews, vol. 63, Sep. 2016.

INEC, “Anuario de estadísticas de transporte 2020,” Nov. 2021. [Online]. Available: https://tinyurl.com/y8uy6ya5

J. Díaz and J. Castillo, “Estimación del indicador kilómetro vehículo recorrido (kvr) mediante ecuaciones lineales y sus aplicaciones en consumos energéticos de transporte,” Información Tecnológica, vol. 32, no. 6, Dec. 2021. [Online]. Available: http://dx.doi.org/10.4067/S0718-07642021000600239

J. C. Sierra, “Estimating road transport fuel consumption in ecuador,” Energy Policy, vol. 92, May. 2016. [13] “Balance energético nacional 2020,” Ministerio de Energía y Recursos Naturales No Renovables, Aug. 2021. [Online]. Available: https://tinyurl.com/4yhtsevt

M. E. Moeletsi, “Socio-economic barriers to adoption of electric vehicles in south africa: Case study of the gauteng province,” World Electric Vehicle Journal, vol. 12, no. 167, Sep. 2021. [Online]. Available: https://doi.org/10.3390/wevj12040167

X. Zhao, Y. Ye, J. Ma, P. Shi, and H. Chen, “Construction of electric vehicle driving cycle for studying electric vehicle energy consumption and equivalent emissions,” Environmental Toxicology and Biogeochemistry of Ecosystems, vol. 27, May. 2020.

A. H. Umar-Bhatti, S. A. Abbas-Kazmi, A. Tariq, and G. Alí, “Development and analysis of electric vehicle driving cycle for hilly urban areas,” Transp. Res. Part D Transp. Environ., vol. 99, Oct. 2021. [Online]. Available: https://doi.org/10.1016/j.trd.2021.103025

J. Brady and M. O’Mahony, “Development of a driving cycle to evaluate the energy economy of electric vehicles in urban areas,” Appl. Energy, vol. 177, Sep. 2016. [Online]. Available: 1https://doi.org/10.1016/j.apenergy.2016.05.094

Z. Chen, Q. Zhang, J. Lu, and J. Bi, “Optimization-based method to develop practical driving cycle for application in electric vehicle power management: A case study in shenyang, china,” Energy, vol. 186, Nov. 2019. [Online]. Available: https://doi.org/10.1016/j.energy.2019.07.096

J. Huertas, J. Díaz, D. Cordero, and K. Cedillo, “A new methodology to determine typical driving cycles for the design of vehicles power trains,” Int. J. Interact. Des. Manuf., vol. 12, Jan. 2017. [Online]. Available: https://doi.org/10.1007/s12008-017-0379-y

R. (UE), “Emisiones procedentes de turismos y vehículos comerciales ligeros,” Jan. 2016. [Online]. Available: https://tinyurl.com/3d6dcswb

J. D. Valladolid, D. Patino, G. Gruosso, C. A. Correa-Flórez, J. Vuelvas, and F. Espinoza, “A novel energy-efficiency optimization approach based on driving patterns styles and experimental tests for electric vehicles,” Electronics, vol. 10, May. 2021.

J. D. Valladolid, R. Albarado, D. Mallahuari, and D. Patiño, “Experimental performance evaluation of electric vehicles (ev) based on analysis of power and torque losses,” Feb. 2020. [Online]. Available: https://doi.org/10.1109/ICIT45562.2020.9067241

N. INEN, “Vehículos automotores. carrocerías de buses. requisitos,”2009.

R.-T. Jonas, C. Hunter, and G. Macht, “Quantifying the impact of traffic on electric vehicle efficiency,” World Electr. Veh. J., vol. 13, no. 15, 2020. [Online]. Available: https://doi.org/10.3390/wevj13010015

Z. Gao, Z. Lin, T. J. LaClair, C. Liu, J. M. Li, A. K. Birky, and et al., “Battery capacity and recharging needs for electric buses in city transit service,” Energy, vol. 122, Mar. 2017. [Online]. Available: https://doi.org/10.1016/j.energy.2017.01.101

D. Cordero-Moreno, D. Davalos, M. Coello, and R. Rockwood, “Proposed criteria to determine typical vehicular driving cycles using minimum weighted differences,” in Urban Transport XXIII. WIT Transactions on The Built Environment, C. Brebbia and S. Ricci, Eds. Southampton: WIT Press, 2017, p. 329–337.

E. Database. Kia e-Soul. [Online]. Available: https://ev-database.org/car/1750/Kia-e-Soul-392-kWh#efficiency

Z. Sun, Z. Wen, X. Zhao, Y. Yang, and S. Li, “Real-world driving cycles adaptability of electric vehicles,” World Electric Vehicle Journal, vol. 11, no. 1, Feb. 2020. [Online]. Available: https://doi.org/10.3390/wevj11010019

E. G. Giakoumis, Driving and Engine Cycles, 1st ed. Cham: Springers, 2017.

Descargas

Publicado

2024-07-18

Cómo citar

Castillo-Calderón, J., Cordero-Moreno, D., Fernández-Palomeque, E. E., Solórzano-Castillo, B., & Jaramillo-Merino, P. R. (2024). Definición de un Ciclo Típico de Conducción de un taxi eléctrico en una ciudad Andina. Revista Facultad De Ingeniería Universidad De Antioquia, (114), 63–70. https://doi.org/10.17533/udea.redin.20240728

Número

Sección

Artículo de investigación