Effects of press-mud pre-treatment on the feasibility of biogas production





Biogas, Feasibility studies, Environmental impact


In this study, an energetic, economic and environmental feasibility for the anaerobic digestion (AD) of press mud previously pre-treated with liquid hot water (LHW) or thermo-alkaline (TA) methods were assessed. A typical Cuban sugar mill was selected as Case Study. The sugar mill has a potential capacity to process 4,600 t d-1 of sugar cane and operates 130 days per year. The biogas produced can be used to feed an internal combustion engine to produce electricity and heat. It was assumed that the electricity will be sold to the national electric grid and the heat recovered from the exhaust gases will be used as energy source to supply the thermal demand for press mud pre-treatments. The thermal requirements for pre-treatments (9.4 and 12.1 MWh d-1) were energy sufficient by recovering the heat from the engine exhaust. For the alternatives considered, an improvement of the environmental profile with respect to the reference scenario was obtained. The profitability of methane production also increased for alternatives considering pre-treatment. In general, the economical, energetic and environmental assessment showed the best indicators for the AD of press mud using LHW pre-treatment.

= 178 veces | PDF
= 138 veces|


Download data is not yet available.

Author Biographies

Lisbet Mailín López-González, University of Sancti Spíritus "José Martí Pérez" (UNISS)

Center for Energy Studies and Industrial Processes (CEEPI). Assistant Professor.

Ileana Pereda-Reyes, Technological University of Havana "José Antonio Echeverría" (CUJAE)

Research Director. Center for Process Engineering Studies (CIPRO).


Julio Pedraza-Gárciga, University of Sancti Spíritus "José Martí Pérez" (UNISS)

Center for Energy Studies and Industrial Processes (CEEPI). Professor.

Ernesto Luis Barrera Cardoso, University of Sancti Spíritus "José Martí Pérez" (UNISS)

Research Director. Center for Energy Studies and Industrial Processes (CEEPI).

Osvaldo Romero-Romero, University of Sancti Spíritus "José Martí Pérez" (UNISS)

Professor. Center for Process Engineering Studies (CIPRO).


L. M. López and et al., “Effect of liquid hot water pre-treatment on sugarcane press mud methane yield,” Bioresour. Technol., vol. 169, pp. 284–290, Oct. 2014.

L. M. López and et al., “Thermo-chemical pre-treatment to solubilize and improve anaerobic biodegradability of press mud,” Bioresour. Technol., vol. 131, pp. 250–257, Mar. 2013.

L. Janke and et al., “Improving anaerobic digestion of sugarcane straw for methane production: Combined benefits of mechanical and sodium hydroxide pretreatment for process designing,” Energy Convers. Manag., vol. 141, pp. 378–389, Jun. 2017.

M. Shafiei, M. M. Kabir, H. Zilouei, I. S. Horváth, and K. Karimi, “Techno-economical study of biogas production improved by steam explosion pretreatment,” Bioresour. Technol., vol. 148, pp. 53–60, Nov. 2013.

J. Budde, A. Prochnow, M. Plochl, T. Suárez, and M. Heiermann, “Energy balance, greenhouse gas emissions, and profitability of thermobarical pretreatment of cattle waste in anaerobic digestion,” Waste Manag., vol. 49, pp. 390–410, Mar. 2016.

R. Cano, A. Nielfa, and M. Fdz, “Thermal hydrolysis integration in the anaerobic digestion process of different solid wastes: energy and economic feasibility study,” Bioresour. Technol., vol. 168, pp. 14–22, Sep. 2014.

A. M. Contreras, E. Rosa, M. Perez, H. V. Langenhove, and J. Dewulf, “Comparative Life Cycle Assessment of four alternatives for using by-products of cane sugar production,” J. Clean. Prod., vol. 17, no. 8, pp. 772–779, May 2009.

E. L. Barrera and et al., “A comparative assessment of anaerobic digestion power plants as alternative to lagoons for vinasse treatment: life cycle assessment and exergy analysis,” J. Clean. Prod., vol. 113, pp. 459–471, Feb. 2016.

B. S. Moraes, S. O. Petersen, M. Zaiat, S. G. Sommer, and J. M. Triolo, “Reduction in greenhouse gas emissions from vinasse through anaerobic digestion,” Appl. Energ., vol. 189, pp. 21–30, Mar. 2017.

A. Meyer and et al., “Impact of uncertainties on greenhouse gas mitigation potential of biogas production from agricultural resources,” Renew. Energ., vol. 37, no. 1, pp. 277–284, Jan. 2012.

Fermentation of organic materials characterisation of the substrate, sampling, collection of material data, fermentation tests, VDI 4630, 2016.

Guía sobre el Biogás. Desde la producción hasta el uso, Fachagentur Nachwachsende Rohstoffe e. V. (FNR), Eschborn, Germany, 2013.

Estudio de pre-factibilidad de plantas de biogás. Empresa Azucarera Melanio Hernández. Nro 6050684TG01000, IPROYAZ, Sancti Spiritus, CU, 2007.

M. S. Peters and K. D. Timmerhaus, Plant design and economics for Chemical Engineers, 4th ed. Singapore: McGraw-Hill, 1991.

Quiminet. Accessed Mar. 15, 2019. [Online]. Available: https://bit.ly/2UKQlC2

Price charge of the products. Accounting and finances department, Unidad Empresarial de Base Central Azucarero Melanio Hernández, Sancti Spiritus, CU, 2019.

(2013) Boletín de información económica banco central de cuba (bcc). BCC. Accessed Mar. 28, 2019. [Online]. Available: https://bit.ly/2Z4n3NM

Manual de biogás, Organización de las Naciones Unidas para la Agricultura y la Alimentación, Santiago de Chile, Chile, 2011.

(2019) Sistema europeo de negociación de CO2. SendeCO2. Accessed Mar. 17, 2019. [Online]. Available: https://bit.ly/2SGq8Dy

T. F. Stocker and et al. (2013) The physical science basis. in: Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. IPCC. New York, USA. [Online]. Available: https://bit.ly/2PBlmDg

(2014) Matches’ process equipment cost estimates. Matches. Accessed Feb. 01, 2019. [Online]. Available: http://www.matche.com/

(2015) Environmental protection agency combined heat and power partnership. catalog of technologies: Section 2. technology characterization – reciprocating internal combustion engines. EPA. Accessed Mar. 10, 2018. [Online]. Available: https://www.epa.gov/

M. Miltner, A. Makaruk, and M. Harasek, “Review on available biogas upgrading technologies and innovations towards advanced solutions,” J. Clean. Prod., vol. 161, pp. 1329–1337, Sep. 2017.

Directrices del IPCC de 2006 para los Inventarios Nacionales de Gases de Efecto Invernadero: Desechos- Tratamiento y eliminación de aguas residuales, IPCC, 2006.

M. J. Goedkoop and et al., “Recipe 2008: A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level,” 01 2008.

(2015) Jenbacher type 3. GE Power and Water. Accessed Feb. 01, 2019. [Online]. Available: https://bit.ly/2LlPjZo

K. R. Salomon, S. Lora, M. H. Rocha, and O. Almazán, “Cost calculations for biogas from vinasse biodigestion and its energy utilization,” Sugar Industry, vol. 136, no. 4, pp. 217–223, Jan. 2011.




How to Cite

López-González, L. M., Pereda-Reyes, I., Pedraza-Gárciga, J., Barrera Cardoso, E. L., & Romero-Romero, O. (2019). Effects of press-mud pre-treatment on the feasibility of biogas production. Revista Facultad De Ingeniería Universidad De Antioquia, (92), 51–59. https://doi.org/10.17533/udea.redin.20190520

Most read articles by the same author(s)