Topological optimization for solids under heat and mass transfer using boundary element

Authors

  • Carla Tatiana Mota-Anflor Universidade de Brasília.
  • Jhon Nero Vaz-Goulart Universidade de Brasília.
  • Rogério José Marczak Universidad Federal de Rio Grande

Keywords:

Shape optimization, potential problems, boundary elements, topological derivative, mass transfer

Abstract


The objetive of this work is to present the implementation of a topological-shape sensitivity formulation in a BEM analysis for simultaneous heat and mass transfer optimization problems. The proposed approach uses a topological derivative in order to estimate the sensitivity to create a hole in the domain of the problem. Thus, it is evaluated at internal points, and the ones showing the lowest values are used to remove material by opening circular cavity. As the iterative process evolves, the original domain has holes progressively punched out until a given stop criteria is achieved. Since the sensitivities for each of the differential equations are different, a penalization-type approach has been used to weight the sensitivities associated to each problem. This allows the imposition of distinct penalization factors for each problem, according to specified priorities. The resutls obtained showed good agreement with solutions available in the literature.

|Abstract
= 9 veces | PDF (ESPAÑOL (ESPAÑA))
= 8 veces|

Downloads

Download data is not yet available.

References

A. Kaviany. Principle of Heat Transfer in Porous Media. Ed. Springer-Verlag. New York. 1991. pp. 1-153.

A. Mantoglou, M. Papantoniou, P. Giannoulopoulos. “Management of coastal aquifers based on nonlinear optimization and evolutionary algorithms”. Journal of Hydrology. Vol. 297. 2004. pp. 209-228.

B. Boyd, K. Hooman. “Air-cooled micro-porous heat exchangers for thermal management of fuel cells”. International Communications in Heat and Mass Transfer. Vol.39. 2012. pp. 363-367.

S. Ndao, Y. Peles, M. Jensen. “Multi-objective thermal design optimization and comparative analysis of electronics cooling technologies”. International Journal of Heat and Mass Transfer. Vol. 52. 2009. pp. 4317-4326.

M. Dondero, A. Cisilino, J. Carella, J. Tomba. “Effective thermal conductivity of functionally graded random micro-heterogeneous materials using representative volume element and BEM”. International Journal of Heat and Mass Transfer. Vol. 54. 2011. pp. 3874-3881.

G. Rozvany, O. Sigmund, T. Birker. “Optimal Desing of Composite and Fibre Reinforced Plates”. Optimal Design with advanced materials. Vol. 23. 1993. pp. 293-309.

J. Céa, S. Garreau, P. Guillaume, M. Masmoudi. “The shape and topological optimizations connection”. Comput Methods Appl. Mech. Engrg. Vol. 188. 2000. pp. 713-726.

J. Sokolowski, A. Zochowki. “Topological derivatives of shape functional for elasticity systems”. Mech. Struct. Mach. Vol. 29. 2001. pp. 331-349.

P. Bendsoe, N. Kikuchi. “Generating optimal topologies in structural design using a homogenization method”. Comput. Methods Appl. Mech. Engrg. Vol. 71. 1988. pp. 197-224.

A. Novotny, R. Feijóo, E. Taroco, C. Padra. “Topological-shape sensitivity analysis”. Comput. Methods Appl. Mech. Engrg. Vol. 192. 2003. pp. 803- 829.

T. Jeng, S. Tzeng, Y. Hung. “An analytical study of local thermal equilibrium in porous heat sinks using thin theory”. International Journal of Heat and Mass Transfer. Vol. 49. 2006. pp. 1907-1914.

Published

2013-01-27

How to Cite

Mota-Anflor, C. T., Vaz-Goulart, J. N., & Marczak, R. J. (2013). Topological optimization for solids under heat and mass transfer using boundary element. Revista Facultad De Ingeniería Universidad De Antioquia, (65), 126–138. Retrieved from https://revistas.udea.edu.co/index.php/ingenieria/article/view/14224