Activated carbon supported cobalt-molybdenum carbides: effect of the synthesis method, heating rate, type of cobalt precursor and presulfiding agent on thiophene hydrodesulfurization


  • Esneyder Puello-Polo Universidad del Atlántico
  • Mónica Virginia Ayala-Gómez Universidad del Atlántico
  • Joaquín L. Brito Instituto Venezolano de Investigaciones Científicas


Hydrodesulfurization, Co-Mo carbides, activated carbon, presulfiding agent, synthesis methods, heating rate, Co precursor type


This  work  studied  the  Effect  of  the  presulfiding  agent,  type  of  precursor (sulfate   vs.   nitrate   of   promotor),   synthesis   method   (conventional   vs.   carbothermal  carbiding)  and  heating  rate  in  the  hydrodesulfurization  of thiophene  over  activated  carbon  supported  cobalt-molybdenum  carbides.  The synthesis was carried out using the methods conventional (CH4/H2 (1:4)) and carbothermal with H2 at 973 K and 1 or 5 K/min. The carbided phases were characterized by surface area (B.E.T), X-ray Diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The surface areas were within a rank of 266 and 493m2/g, whereas the XRD analysis verified the presence of Co6Mo6C2  for  carbides  obtained  by  carbothermal  method  independently  of  these variables. The XPS showed the presence on the surface of: Moδ+, Mo4+and Mo6+, and Co2+ whose abundance was influenced by the synthesis method and  type  of  precursor.  On  the  order  hand,  XPS  revealed  that  the  carbides  obtained by sulfate precursor retained sulfur on the surface as S2- and SO42-. Tests of thiophene HDS showed that carbides obtained by the carbothermal method had higher activity than those obtained by the conventional method when it was activated with CS2/H2 and inversely when used H2S/H2.

= 23 veces | PDF (ESPAÑOL (ESPAÑA))
= 18 veces|


Download data is not yet available.

Author Biographies

Esneyder Puello-Polo, Universidad del Atlántico

Grupo de Catálisis y Materiales, Facultad de Ciencias Básicas

Mónica Virginia Ayala-Gómez, Universidad del Atlántico

Grupo de Catálisis y Materiales, Facultad de Ciencias Básicas

Joaquín L. Brito, Instituto Venezolano de Investigaciones Científicas

Laboratorio de Fisicoquímica de Superficies, Centro de Química


I. Babich, J. Moulijn. “Science and technology of novel processes for deep desulfurization of oil refinery streams: a review”. Fuel. Vol. 82. 2003. pp. 607-631.

E. Furimsky. “Metal carbides and nitrides as potential catalysts for hydroprocessing”. Appl. Catal. A: Gen. Vol. 240. 2003. pp. 1-28.

P. Liu, J. Rodríguez, J. Muckerman. “Sulfur adsorption and sulfidation of transition metal carbides as hydrotreating catalysts”. J. Mol. Catal. A: Chem. Vol. 239. 2005. pp 116-124.

V. Sundaramurthy, A. Dalai, J. Adjaye. “Effect of phosphorus addition on the hydrotreating activity of NiMo/Al2 O3 carbide catalyst”. Catal. Today. Vol. 125. 2007. pp. 239-247.

L. Kaluza, M. Zdrazil. “Carbon-supported Mo catalysts prepared by a new impregnation method using a MoO3 / water slurry: saturated loading, hydrodesulfurization activity and promotion by Co”. Carbon. Vol. 39. 2001. pp. 2023-2034.

P. Aegerter, W. Quigley, G. Simpson, D. Ziegler, J. Logan, K. McCrea, S. Glazier, M. Bussell. “Thiophene Hydrodesulfurization over AluminaSupported Molybdenum Carbide and Nitride Catalysts: Adsorption Sites, Catalytic Activities, and Nature of the Active Surface”. J. Catal. Vol. 164. 1996.pp. 109- 121.

C. Sayag, M. Benkhaled, S. Suppan, J. Trawczynski, G. Djéga. “Comparative kinetic study of the hydrodenitrogenation of indole over activated carbon black composites (CBC) supported molybdenum carbides”. App. Catal. A: Gen. Vol. 275. 2004. pp. 15- 24.

Z. Sarbak. “Characterisation of thermal properties of oxide, reduced and sulphided forms of alumina supported Co(Ni)–Mo(W) catalysts prepared by coprecipitation”. Thermochim. Acta. Vol. 379. 2001. pp. 1-5.

J. Laine, F. Severino, M. Labady, J. Gallardo. “The synergistic participation of the support in sulfided NiMo/C hydrodesulfurization catalysts”. J. Catal. Vol. 138. 1992. pp. 145-149.

D. Mordenti, D. Brodzki, G. Djéga. “New Synthesis of Mo2 C 14 nm in Average Size Supported on a High Specific Surface Area Carbon Material”. J. Solid State Chem. Vol. 141. 1998. pp. 114-120.

C. Liang, P. Ying, C. Li. “Nanostructured β-Mo2 C Prepared by Carbothermal Hydrogen Reduction on Ultrahigh Surface Area Carbon Material”. Chem. Mat. Vol. 14. 2002. pp. 3148-3151.

L. Volpe, M. Boudart. “Compounds of molybdenum and tungsten with high specific surface area: II. Carbides”. J. Solid State Chem. Vol. 59. 1985. pp. 348- 356.

S. Texier, G. Berhault, G. Pérot, V. Harlé, F. Diehl. “Activation of alumina-supported hydrotreating catalysts by organosulfides: comparison with H2 S and effect of different solvents”. J. Catal. Vol. 223. 2004. pp. 404-418.

J. Lee, L. Volpe, F. Ribeiro, M. Boudart. “Molybdenum carbide catalysts: II. Topotactic synthesis of unsupported powders”. J. Catal. Vol. 112. 1988. pp. 44-53.

Power Diffraction File. Ed. Newtown Square, Philadelphia, USA. 1995.

S. Biniak, G. Szymański, J. Siedlewski, A. Światkowski. “The characterization of activated carbons with oxygen and nitrogen surface groups”. Carbon. Vol. 35. 1997. pp. 1799-1810.

Z. Yue, W. Jiang, L. Wang, S. Gardner, C. Pittman. “Surface characterization of electrochemically oxidized carbon fibers”. Carbon. Vol. 37. 1999. pp. 1785-1796.

S. Suppan, J. Trawczyński, J. Kaczmarczyk, G. Djéga, A. Hynaux, C. Sayag. “Effect of carbon black composite (CBC) support properties on hydrodesulfurization performance of sulfided Mo and Co, and carburized Mo, catalysts”. Applied Catalysis A: General. Vol. 280. 2005. pp. 209-214.

P. Delporte, F. Meunier, C. Pham, P. Vennegues, M. Ledoux, J. Guille. “Physical characterization of molybdenum oxycarbide catalyst; TEM, XRD and XPS”. Catalysis Today. Vol. 23. 1995. pp. 251-267.

J. Figueiredo, J. Rivera, M. Ferro. “Gasification of active carbons of different texture impregnated with nickel, cobalt and iron”. Carbon. Vol. 23. 1995. pp. 251-267.

L. Portela, P. Grange, B. Delmon. “XPS and NO Adsorption Studies on Alumina-Supported Co-Mo Catalysts Sulfided by Different Procedures”. J. Catal. Vol. 156. 1995. pp. 243-254.

P. Da Costa, J. Manoli, C. Potvin, G. Djéga. “Deep HDS on doped molybdenum carbides: From probe molecules to real feedstocks”. Catal. Today. Vol. 107- 108. 2005. pp. 520-530.

J. Laine, M. Labady, F. Severino, S. Yunes. “Sink Effect in Activated Carbon-Supported Hydrodesulfurization Catalysts”. J. Catal. Vol. 166. 1997. pp. 384-387.

B. Weckhuysen, D. Wang, M. Rosynek, J. Lunsford. “Conversion of Methane to Benzene over Transition Metal Ion ZSM-5 Zeolites: II. Catalyst Characterization by X-Ray Photoelectron Spectroscopy”. J. Catal. Vol. 175. 1998. pp. 347-351.

Y. Al-Zeghayer, P. Sunderland, W. Al-Masry, F. AlMubaddel, A. Ibrahim, B. Bhartiya, B. Jibril. “Activity of CoMo/γ-Al2 O3 as a catalyst in hydrodesulfurization: effects of Co/Mo ratio and drying condition”. Appl. Catal. A: Gen. Vol. 282. 2005. pp. 163-171.

V. La Parola, G. Deganello, C. Tewell, A. Venezia. “Structural characterisation of silica supported CoMo catalysts by UV Raman spectroscopy, XPS and X-ray diffraction techniques”. Appl. Catal. A: Gen. Vol. 235. 2002. pp. 171-180.

E. Puello, J. Brito. “Effect of the activation process on thiophene hydrodesulfurization activity of activated carbon-supported bimetallic carbides”. Catal. Today. Vol. 149. 2010. pp. 316-320.

E. Puello, J. Brito. “Relationship between sulfidation and HDS catalytic activity of activated carbon supported Mo, Fe-Mo, Co-Mo and Ni-Mo carbides”. Catal. Lett. Vol. 135. 2010. pp. 212-218.



How to Cite

Puello-Polo, E., Ayala-Gómez, M. V., & Brito, J. L. (2014). Activated carbon supported cobalt-molybdenum carbides: effect of the synthesis method, heating rate, type of cobalt precursor and presulfiding agent on thiophene hydrodesulfurization. Revista Facultad De Ingeniería Universidad De Antioquia, (70), 75–85. Retrieved from