Implications of heterogeneity on transport simulations at large scale: the Morroa aquifer case


  • Anibal Jose Pérez-García University Antonio Narino
  • Oscar García-Cabrejo University of Illinois
  • Nelson Obregón-Neira National University of Colombia



heterogeneity, multiple-point geostatistics, transport simulations, Morroa aquifer


The Morroa aquifer located in Sucre state (northern Colombia) represents the exclusive source of water supply for nearly 500.000 people, including the capital of the state Sincelejo. Although multiple studies have been performed in this area, and a considerable amount of data including piezometric levels, stratigraphy at wells, and pumping tests has been collected; this information is in general fuzzy, heterogeneous and incomplete. The uncertainty in this information affects any quantification of the response of the aquifer. Therefore a methodology able to account for all of the available data and integrate it in a comprehensive conceptual model represents the starting point of our investigation. The uncertainty is accounted for by generating multiple realizations of the aquifer, so that these realizations honor statistical properties of the data. To generate the realizations, two different methods were employed: (1) the well-known Sequential Indicator method (SISIM) which is a semi-variogram based geostatistic method; and (2) the multiple-point geostatistics algorithm SNESIM, based on the concept of training images that represents the database of geological patterns, from which multiple-point statistics are borrowed. Results of the geostatistics simulations show the great ability of MPS to reproduce complex curve heterogeneities.

Flow and transport simulations are performed using two different conceptual models of the Morroa aquifer considering heterogeneities. Steady-state flow and conservative contaminant were assumed. Results show a considerable influence of heterogeneity and the geostatistic method used to generate the conceptual model, i.e. two-points or multiple-point geostatistics. In particular, large differences on the aquifer response distribution were observed that may have an important effect on the design of mid- and large term water management policies regarding both quantity and quality at the Morroa aquifer, as well as on the design of remediation techniques.

= 110 veces | PDF (ESPAÑOL (ESPAÑA))
= 55 veces|


Download data is not yet available.

Author Biographies

Anibal Jose Pérez-García, University Antonio Narino

Assistant Professor at the Faculty of Environmental Engineering, leader of the Research Group on Resources, Ecology, Sustainable Development and Environmental Engineering (GRESIA).

Oscar García-Cabrejo, University of Illinois

Department of Civil and Environmental Engineering.

Nelson Obregón-Neira, National University of Colombia

Faculty of Civil and Agricultural Engineering.


J. Buitrago, L. Donado. Evaluación de las condiciones de explotación de la zona de recarga del Acuífero Morroa. Departamentos de Sucre y Córdoba (Colombia). Proyecto de Grado para optar al título de Ingeniero Civil. Facultad de Ingeniería, Universidad Nacional de Colombia. Bogotá, Colombia. 2000. pp. 200.

D. Pacheco, P. Villegas. Caracterización hidráulica del Acuífero Morroa utilizando pruebas de bombeo. Proyecto de Grado para optar al titulo de Ingeniero Civil. Facultad de Ingeniería, Universidad de Sucre. Sincelejo, Colombia. 2003. pp. 100.

Y. Abreu. Determinación de la geometría del Acuífero de Morroa y localización de futuras zonas de posible exploración y explotación del acuífero, mediante el uso de líneas sísmicas y pozos de petróleo. Informe 015- 06-05. Ministerio de Ambiente Vivienda y Desarrollo Territorial. 2005. pp . 320.

A. Pérez, N. Obregon, O. Garcia. “Análisis de metodologías geoestadísticas alternativas en la modelación del acuífero Morroa (Sucre-Colombia)”. Revista Facultad de Ingenieria Universidad de Antioquia. N.° 50. 2009. pp. 53-67.

C. Deutsch, A. Journel. GSLIB: Geostatistical Software Library and User‘s Guide. Applied Geostatistics Series. 2nd ed. Ed. Oxford University Press. Oxford, UK. 1998. pp. 340.

A. Journel, F. Alabert. “New method for reservoir modeling”. Journal of Petroleum technology. Vol. 42. 1990. pp. 212-218.

S. Strebelle. Sequential simulation drawing structures from training images. PhD thesis. Stanford University. Stanford, USA. 2000. pp. 120.

Feyen, Luc, and Jef Caers. Multiple-point geostatistics: a powerful tool to improve groundwater flow and transport predictions in multi-modal formations. Geostatistics for Environmental Applications ed. 1. Springer Berlin Heidelberg, 2005. 197-208.

X. Emery. “Testing the correctness of the sequential algorithm for simulating Gaussian random fields”. Stochastic Environmental Research and Risk Assessment. Vol. 18. 2004. pp. 401-413.

X. Emery. “Properties and limitations of sequential indicator simulation”. Stochastic Environmental Research and Risk Assessment. Vol. 18. 2004. pp. 414-424.

F. Guardiano, R. Srivastava. “Multivariate geostatistics: beyond bivariate moments”. A. Soares (editor). Geostatistics: Troia ’92. 1st ed. Ed. Kluwer Academic Publishers. Dordrecht, Netherlands. 1993. pp. 133-144.

S. Strebelle, M. Levy. (2008). “Using multiple-point statistics to build geologically realistic reservoir models: the MPS/FDM workflow”. A. Robinson, P. Griffiths, J. Price, J. Hegre, A. Muggeridge (editors). The Future of Geological Modelling in Hydrocarbon Development. 1st ed. Ed. Geological Society, Special Publications. London, UK. 2008. pp. 67-74.

L. Hu, T. Chugunova. “Multiple-point geostatistics for modeling subsurface heterogeneity: a comprehensive review”. Water Resources Research. Vol. 44. 2008. pp. 1-14.

A. Comunian, P. Renard, J. Straubhaar P. Bayer. “Three-dimensional high resolution fluvio-glacial aquifer analog-Part 2: Geostatistical modeling”. Journal of Hydrology. Vol. 405. 2011. pp. 10-23.

G. Rodríguez. Estudio hidrogeológico del acuífero de Morroa. 1st ed. Ed. Ingeominas. 1993. pp. 12-33.

H. Duque. “Geotectónica y evolución de la región noroccidental de Colombia”. Boletín Geológico, Ingeominas. Vol. 23. 1980. pp. 4-35.

R. Douglas, H. Heitman. “Slope and basin benthic foraminifera of the California borderland”. L. Doyle, O. Pilkey. (editors). Geology of Continental Slopes. Society of Economic Paleontologists and Mineralogists: Special Publication 27). 1st ed. Ed. Sepm Society for Sedimentary. 1979. pp. 231-246.

CARSUCRE, FINAGUAS. Sistema de Información para la Gestión del Recurso hídrico en el acuífero de Morroa (SIGAS). Informe Técnico, Carsucre. Sincelejo, Colombia. 2001. pp. 100.

A. Journel. “Combining knowledge from diverse sources: An alternative to traditional conditional independence hypothesis”. Mathematical geology. Vol. 34. 2002. pp. 573-596.

R. Therrien, R. McLaren, E. Sudicky, S. Panday. A three-dimensional numerical model describing fully integrated subsurface and solute surface flow and solute transport. Technical report. 2008.

A. Pérez, R. Abrahão, J. Causapé, O. Cirpka, C. Bürger. “Simulating the transition of a semi-arid rainfed catchment towards irrigation agricultura”. Journal of Hydrology. Vol. 409. 2011. pp. 663-681.

P. Brunner, C. Simmons. “HydroGeoSphere: A Fully Integrated, Physically Based Hydrological Model”. Ground Water. Vol. 50. 2012. pp. 170-176.

CARSUCRE. Revista Proyecto de Protección Integral de Aguas Subterráneas (PPIAS). Carsucre. Sincelejo, Colombia. 2005. pp. 8-16.



How to Cite

Pérez-García, A. J., García-Cabrejo, O., & Obregón-Neira, N. (2014). Implications of heterogeneity on transport simulations at large scale: the Morroa aquifer case. Revista Facultad De Ingeniería Universidad De Antioquia, (73), 19–28.

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 > >> 

You may also start an advanced similarity search for this article.