Alternative geostatistics tools applied to Morroa aquifer modeling (Sucre-Colombia)

Authors

  • Aníbal Pérez-García Universidad Antonio Nariño
  • Nelson Obregón-Neira Universidad Javeriana
  • Oscar García-Cabrejo Universidad Javeriana

Keywords:

Morroa Aquifer, groundwater modeling, geostatistics, conditional stochastic simulation, multiple-point statistics, soft data, hard data

Abstract


In this paper, stochastic simulations and some multiple-point geostatistical principles are developed using a comparative methodology consisting of two phases. First, a traditional methodology based on variogram concepts called Conditional Stochastic Simulation (CSS) and more specifically the Sequential Indicator Simulation (SISIM) is applied to the aquifer modeling. Secondly, modern algorithm based on multiple-point geostatistics called SNESIM [1] and ζ Model [4] are implemented to integrate information available in the definition of Morroa aquifer facies. The simulations are realized by using algorithms constructed in references [1, 2] and S-Gems software prepared at Stanford University[3]. Results show the convenience of employing training images with soft and hard data conditioning integrated by ζ Model, and CSS for configuring hydrogeological models when barely deficient information is available.

|Abstract
= 39 veces | PDF (ESPAÑOL (ESPAÑA))
= 28 veces|

Downloads

Download data is not yet available.

References

S. Strabelle. Sequential Simulation Drawing Structures from Training Images. Stanford Center for Reservoir Forecasting. 13th Annual Meeting, Stanford, USA.2000 .pp .12O.

García-Cabrejo. Metodologías de modelamiento en hidrociencias integrando geoestadistica y redes neuronales artificiales. Tesis para optar al titulo de Magíster en Hidrosistemas, Pontificia Universidad Javeriana. 2008. pp.176.

N. Remy. Geostatistical Earth Modeling Software:User’s Manual. Stanford University. 2004. pp 87.

A. G. Journel. “Combining knowledge from diverse sources: An alternative to traditional conditional independence hypothesis”. Mathematical geology. Vol. 34. 2002. pp. 573-596.

J. Buitrago, L. Donado. Evaluación de las condiciones de explotación de la zona de recarga del Acuífero Morroa. Departamentos de Sucre y Córdoba (Colombia). Proyecto de Grado para optar al título de Ingeniero Civil. Facultad de Ingeniería. Universidad Nacional de Colombia. Bogotá. 2000. pp. 200.

D. Pacheco, P. Villegas. Caracterización hidráulica del Acuífero Morroa utilizando pruebas de bombeo. Proyecto de Grado para optar al titulo de Ingeniero Civil. Facultad de Ingeniería. Universidad de Sucre. Sincelejo. Colombia. 2003. pp. 100.

Y. Abreu. Determinación de la geometría del Acuífero de Morroa y localización de futuras zonas de posible exploración y explotación del acuífero, mediante el uso de líneas sísmicas y pozos de petróleo. Informe 015- 06-05. Ministerio de Ambiente Vivienda y Desarrollo Territorial. Junio 2005. pp . 320.

W. M. Telford, L. P. Geldart, R.E. Sheriff. Applied Geophysics. Cambridge University Press. Cambridge.1990. pp. 770.

N. Copty. Y. Rubin. G. Mavko. “Geophysicalhydrological identification of field permeabilities through Bayesian updating”. Water Resources Res. Vol. 29. 1993. pp. 2813-2825.

S. K. Upadhyay. Seismic Reflection Processing: With Special Reference to Anisotropy. Ed. Springer. Londres.2004. pp. 636.

A. G. Journel, E. Isaaks. Conditional indicator simulation: Application to a Saskatchewan uranium deposit. Mathematical Geology. Vol. 16.1984. pp. 34.

J. Caers, L. Feyen. Multiple-point geostatistics: a powerful tool to improve groundwater flow and

transport predictions in multi-modal formations. Stanford University. Department of Geological and Environmental Sciences. Stanford. USA. 2000. pp . 11.

C. Deutsch, A. G. Journel. GSLIB: Geostatistical Software Library and User‘s Guide. Applied Geostatistics Series. 2a ed. Oxford University Press. Oxford.1998. pp . 340.

A. Journel, F. Alabert. New method for reservoir modeling, Journal of Petroleum technology. Vol 42. 1990. pp 212-218.

B. Arpat. Sequential Simulation with Patterns. Disertación Doctoral. Universidad de Stanford. 2005. pp. 160. M. Anderson. W. Woessner. Applied Groundwater Modeling. Academic Press. Inc. San Diego (CA). 1992. pp. 380.

D. G. A. Krige. Statistical approach to some basin mine valuation problems on the Witwatersrand, J. Chem Metall and Min. Soc. South Africa. Vol. 52. 1951. pp 119-139.

G. Matheron. Principles of Geostatistics, Economy Geology. Vol. 58. 1963. pp. 1246-1266.

S. Krishnan, A. Boucher, A. Journel. “Evaluating information redundancy through the tau model”. Geostat 2004 Proceedings. 7th International Geostatistic Congress. Banff (Canada). 2004. pp. 1037-1046

C. Farmer. “Numerical rocks”. P. King (editor) The mathematical generation of reservoir geology. Clarendon Press. Oxford.1990. pp. 22-33.

C. Deutsch. “Fortran programs for calculating connectivity of three dimensional numerical models and for ranking multiple realizations”. Computer and Geosciences. Vol. 24. 1998. pp. 69-76.

H. Tjelmeland. Stochastic Models in reservoir characterization and Markov random fields for compact objects. Disertación doctoral. Universidad de Ciencia y Tecnología. Noruega. Vol 44. 1996. pp. 100.

J. Caers, A. Journel, Stochastic reservoir simulation using neural networks trained on outcrop data. SPE Annual Technical Conference and Exhibition. 1998. pp. 321-336.

P. Goovaerts. Geostatistics for Natural resources evaluation. New York: Oxford University Press. 1997. pp. 483.

D. Knuth. Art of Computer Programming. 2a ed. Addison-Wesley Pub. Co. Reading(MA). 1998. pp. 896.

R. M. Srivatasa. An Application of Geostatistical Methods for Risk Analysis in Reservoir Management. Society of Petroleum Engineering. SPE 20608. 1990. pp . 825-834.

S. A. McKenna. Utilization of soft data for uncertainty reduction in groundwater flow and transport modeling. Golden, CO. Colorado School of Mines. PhD dissertation.1994. pp. 150.

Published

2013-03-20

How to Cite

Pérez-García, A., Obregón-Neira, N., & García-Cabrejo, O. (2013). Alternative geostatistics tools applied to Morroa aquifer modeling (Sucre-Colombia). Revista Facultad De Ingeniería Universidad De Antioquia, (50), 63–76. Retrieved from https://revistas.udea.edu.co/index.php/ingenieria/article/view/14932