Análisis energético y exergético de un motor diesel de automoción operando en diferentes altitudes

Autores/as

  • John Agudelo Universidad de Antioquia
  • Andrés Agudelo Universidad de Antioquia
  • Juan Pérez Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.redin.16018

Palabras clave:

Tasa de calor liberado, altitud, motores diesel, análisis exergético

Resumen

La densidad del aire disminuye con el aumento de la altitud sobre el nivel del mar, este aspecto afecta el proceso de combustión, la formación de emisiones contaminantes y por tanto el desempeño del motor. En este trabajo se presenta el diagnóstico del proceso de combustión de un motor diesel de automoción turbo-alimentado, mediante la medición de presión en cámara operando en tres alturas diferentes sobre el nivel del mar, bajo condiciones estacionarias, utilizando diesel convencional (acpm) como combustible. A medida que aumenta la altura sobre el nivel del mar se incrementa la relación combustible/ aire (mezcla más rica) y con ello el consumo específico de combustible, la duración de la combustión, la combustión en fase premezclada, la temperatura máxima, el calor transferido a los gases y la exergía destruida, mientras que el rendimiento térmico efectivo del motor, la presión máxima y la exergía en el cilindro disminuyen. Sin embargo, la eficiencia mecánica y el tiempo de inyección se mantienen aproximadamente constantes. Las diferencias encontradas en la exergía destruida se deben a las variaciones del proceso de combustión, ya que no se encontraron efectos significativos en las carreras de compresión y expansión. La mayor irreversibilidad debida al aumento de la altura se debe a la baja calidad de la energía de los gases de escape.

|Resumen
= 1922 veces | PDF
= 164 veces|

Descargas

Biografía del autor/a

John Agudelo, Universidad de Antioquia

Grupo de manejo eficiente de la energía GIMEL. Facultad de ingeniería

Andrés Agudelo, Universidad de Antioquia

Grupo de manejo eficiente de la energía GIMEL. Facultad de ingeniería

Juan Pérez, Universidad de Antioquia

Grupo de manejo eficiente de la energía GIMEL. Facultad de ingeniería

Citas

M. Lapuerta, O. Armas, J. R. Agudelo, C. A. Sánchez. “Estudio del efecto de la altitud sobre el comportamiento de motores de combustión interna. Parte 1: Funcionamiento”. Información Tecnológica. Vol. 17. 2006. pp. 21-30. DOI: https://doi.org/10.4067/S0718-07642006000500005

J. R. Sodré, S. M. C. Soares. “Comparison of engine power correction factors for varying atmospheric conditions”. Journal of the Brazilian Society of Mechanical Sciences and Engineering. Vol. 25. 2003. pp. 295-305. DOI: https://doi.org/10.1590/S1678-58782003000300010

S. M. C. Soares, J. R. Sodré. “Effects of atmospheric temperature and pressure on the performance of a vehicle”. Proc. Instn. Mech. Engrs. Part D. Vol. 216. 2002. pp. 473-477.

J. B. Heywood. Internal combustion engine fundamentals. Ed. McGraw-Hill. New York. 1988. pp. 980.

J. Arrègle, J. J. López, J. M. García, C. Fenollosa.“Development of a zero-dimensional diesel combustion model. Part 1: Analysis of the quasi-steady difussion combustion phase”. Applied Thermal Engineering.Vol. 23. 2003. pp. 1301-1317. DOI: https://doi.org/10.1016/S1359-4311(03)00079-6

H. Hiroyasu, M. Arai, M. Tabata. “Empirical equations for the Sauter mean diameter of a Diesel spray”. SAE890464. 1989. pp. 1-12. DOI: https://doi.org/10.4271/890464

J. E. Dec. Conceptual model of DI Diesel combustion based on laser-sheet imaging. SAE 970873. 1997. pp. 1-15. DOI: https://doi.org/10.4271/970873

M. Lapuerta, O. Armas, J. R. Agudelo, A. F. Agudelo.“Estudio del efecto de la altitud sobre el comportamiento de motores de combustión interna. Parte 2: Motores diesel”, Información Tecnológica. Vol. 17. 2006. pp. 31-41. DOI: https://doi.org/10.4067/S0718-07642006000500006

S. Lizhong, S. Yungang, Y. Wensheng, X. Junding. “Combustion Process of Diesel Engines at Regions with Different Altitude”. SAE 950857. 1995. pp. 1-10. DOI: https://doi.org/10.4271/950857

M. Lapuerta, O. Armas, J. J. Hernández. “Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas”. Applied Thermal Engineering. Vol. 19. 1999. pp. 513-529. DOI: https://doi.org/10.1016/S1359-4311(98)00075-1

G. Woschni. “A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine”. SAE 670931. 1967. pp. 1-15. DOI: https://doi.org/10.4271/670931

B. D. Hsu, Practical diesel-engine combustion analysis. Society of Automotive Engineers – SAE. Warrendale. 2002. pp. 1-10. DOI: https://doi.org/10.4271/R-327

M. A. Rosen, I. Dincer. “Effect of varying dead-state properties on energy and exergy analyses of thermal systems”. International Journal of Thermal Sciences. Vol. 43. 2004. pp. 121–133. DOI: https://doi.org/10.1016/j.ijthermalsci.2003.05.004

J. Etele, M. A. Rosen, “Sensitivity of exergy efficiencies of aerospace engines to reference environment selection”. Exergy Int. J. Vol. 1. 2001. pp. 91-99. DOI: https://doi.org/10.1016/S1164-0235(01)00014-0

D. E. Foster. “An overview of zero-dimensional thermodynamic models for IC engine data analysis”. SAE 852070. 1985. pp. 1-15. DOI: https://doi.org/10.4271/852070

J. A. Caton. “Results from the second-law of thermodynamics for a spark-ignition engine using an engine cycle simulation”. Fall Technical Conference, ASME-ICED. 1999. pp. 35-49.

H. N. Shapiro, J. H. Van Gerpen. “Two zone combustion models for second law analysis of internal combustion engines”. SAE 890823. 1989. pp. 1-12. DOI: https://doi.org/10.4271/890823

M. Lapuerta, R. Ballesteros, J. R. Agudelo. “Effect of the gas state equation on the thermodynamic diagnostic of diesel combustion”. Applied Thermal Engineering. Vol. 26. 2006. pp. 1492-1499. DOI: https://doi.org/10.1016/j.applthermaleng.2006.01.001

A. Valero, M. Lozano. “Energy, entropy, exergy and free energy balances. Methods for the diagnosis of industrial facilities”. Ingeniería Química. Mayo. 1987. pp. 143-153.

M. J. Moran, H. N. Shapiro. Fundamentals of Engineering Thermodynamics. 5th ed. Ed. John Wiley & Sons. The Atrium. 2006. pp. 855.

I. Dincer, Y. A. Cengel. “Energy, entropy and exergy concepts and their roles in thermal engineering”. Entropy. Vol. 3. 2001. pp. 116-149. DOI: https://doi.org/10.3390/e3030116

C. D. Rakopoulos. “Evaluation of a spark ignition engine cycle using first and second law analysis techniques”. Energy Conversion and Management. Vol. 34. 1993. pp. 1299-1314. DOI: https://doi.org/10.1016/0196-8904(93)90126-U

F. Bozza, R. Nocera, A. Senatore, R. Tuccillo. “Second law analysis of turbocharged engine operation”. SAE 910418. 1991. pp. 1-10. DOI: https://doi.org/10.4271/910418

J. Li, L. Zhou, K. Pan, D. Jiang, J. Chae. “Evaluation ofthe thermodynamic process of indirect injection diesel engines by the first and second law”. SAE 952055. 1995. pp. 1-12. DOI: https://doi.org/10.4271/952055

C. D. Rakopoulos, E. G. Giakoumis. “Second-law analyses applied to internal combustion engines operation”. Progress in Energy and Combustion Science. Vol. 32. 2006. pp. 2-47. DOI: https://doi.org/10.1016/j.pecs.2005.10.001

J. Szargut, D. R. Morris, F. R. Steward. Exergy analysis of thermal, chemical, and metallurgical processes. Ed. Hemisphere Publishing Corporation. New York. 1988. pp. 345.

T. J. Kotas. The exergy method of thermal plant analysis. Ed. Krieger Publishing Company. Malabar. Florida. 1995. pp. 350.

D. C. Kyritsis, C. D. Rakopoulos. «Parametric study of the availability balance in an internal combustion engine cylinder». SAE 2001-01-1263. 2001. pp. 1-13. DOI: https://doi.org/10.4271/2001-01-1263

C. D. Rakopoulos, D. C. Kyritsis. “Comparative second-law analysis of internal combustion engine operation for methane, methanol, and dodecane fuels”. Energy. Vol. 26. 2001. pp. 705-22. DOI: https://doi.org/10.1016/S0360-5442(01)00027-5

C. D. Rakopoulos, E. G. Giakoumis. “Development of cumulative and availability rate balances in a multicylinder turbocharged indirect injection diesel engine”. Energy Conversion and Management. Vol. 38. 1997. pp. 347-369. DOI: https://doi.org/10.1016/S0196-8904(96)00055-6

C. D. Rakopoulos, E. G. Giakoumis. “Availability analysis of a turbocharged diesel engine operating under transient load conditions”. Energy. Vol. 29. 2004. pp. 1085-1104. DOI: https://doi.org/10.1016/j.energy.2004.02.028

M. Brunt, A. Emtage. “Evaluation of IMEP routines and analysis errors”. SAE 960609. 1996. pp. 1-17. DOI: https://doi.org/10.4271/960609

A. Agudelo, J. R. Agudelo, P. Benjumea Diagnóstico de la combustión de biocombustibles en motores. Ed. Universidad de Antioquia. Medellín. Marzo 2007. Pp 147.

Ilba Cuadrado. J. R. Agudelo, C. Sánchez. Flujo compresible en múltiples de motores. Ed. Universidad de Antioquia. Medellín. Septiembre 2008. pp 123.

Y. Zhang, J. H. Van Gerpen. “Combustion analysis of esters of soybean oil in a diesel engine”. SAE 960765. 1996. pp. 1-12 . DOI: https://doi.org/10.4271/960765

B. Xiaoping, Z. Gengyun, Z. Xiaojing. “Predicting Vehicle Turbocharged Diesel Engine Performance at Altitude”. SAE 961826. 1996. pp. 1-9. DOI: https://doi.org/10.4271/961826

M. K. Anderson, D. N. Assanis, Z. S. Filipi. “First and second law analyses of a naturally-aspirated, Miller cycle, SI engine with late intake valve closure”. SAE 980889. 1998. pp. 1-12. DOI: https://doi.org/10.4271/980889

J. A. Velásquez, L. F. Milanez. “Analysis of the irreversibilities in diesel engines”. SAE 940673. 1994. pp.1-12. DOI: https://doi.org/10.4271/940673

A. Parlak, H. Yasar, O. Eldogan. “The effect of thermal barrier coating on a turbo-charged Diesel engine performance and exergy potential of the exhaust gas”. Energy Conversion and Management. Vol. 46. 2005. pp. 489-499 DOI: https://doi.org/10.1016/j.enconman.2004.03.006

Descargas

Publicado

2013-07-24

Cómo citar

Agudelo, J., Agudelo, A., & Pérez, J. (2013). Análisis energético y exergético de un motor diesel de automoción operando en diferentes altitudes. Revista Facultad De Ingeniería Universidad De Antioquia, (48), 45–54. https://doi.org/10.17533/udea.redin.16018
Crossref
0
Scopus
24
Tian W. (2024)
Research on Transient Characteristics of an Aviation Starter Motor Under Low Temperature and Pressure. Energies, 17(24),
10.3390/en17246258
Song Z. (2024)
Operation parameters investigation on combustion and emission of a non-road diesel engine based on orthogonal experiment design at different altitudes. Heliyon, 10(21),
10.1016/j.heliyon.2024.e40086
Sogut M.Z. (2024)
Assessment of altitude effects based on the consumption behavior of a piston-prop engine by entropy approach. Aircraft Engineering and Aerospace Technology, 96(7), 945-953.
10.1108/AEAT-02-2024-0028
Wang C. (2024)
Role of Altitude in Influencing the Spray Combustion Characteristics of a Heavy-Duty Diesel Engine in a Constant Volume Combustion Chamber. Part II: Impinging Diesel Jet. ACS Omega, 9(4), 4513-4527.
10.1021/acsomega.3c07357
Wang C. (2023)
Role of Altitude in Influencing the Spray Combustion Characteristics of a Heavy-Duty Diesel Engine in a Constant Volume Combustion Chamber. Part I: Free Diesel Jet. Energies, 16(12),
10.3390/en16124832
Troyanovskaya I. (2022)
Influence of Mountain Conditions on Road Fuel Consumption (Example of the Republic of Tajikistan). Transportation Research Procedia, 61, 273-279.
10.1016/j.trpro.2022.01.045
Zhao W. (2021)
Effect of altitude on the emission characteristics of a di diesel engine. E3S Web of Conferences, 268,
10.1051/e3sconf/202126801049
Huang F. (2020)
Study on Altitude Adaptability of a Turbocharged Off-Road Diesel Engine. Journal of Engineering for Gas Turbines and Power, 142(11),
10.1115/1.4047932
Huang F. (2020)
Altitude Adaptability of a Turbocharged Off-Road Diesel Engine. Neiranji Gongcheng/Chinese Internal Combustion Engine Engineering, 41(4),
10.13949/j.cnki.nrjgc.2020.04.006
Jiao Y. (2020)
Effects of Injection Parameters on the Performance of a Diesel Engine at Different Altitudes. Neiranji Xuebao/Transactions of CSICE (Chinese Society for Internal Combustion Engines), 38(3), 210-218.
10.16236/j.cnki.nrjxb.202003028
Giraldo M. (2019)
Real emissions, driving patterns and fuel consumption of in-use diesel buses operating at high altitude. Transportation Research Part D: Transport and Environment, 77, 21-36.
10.1016/j.trd.2019.10.004
García-Contreras R. (2019)
Thermoelectric energy recovery in a light-duty diesel vehicle under real-world driving conditions at different altitudes with diesel, biodiesel and GTL fuels. Energies, 12(6),
10.3390/en12061105
Dong S.R. (2018)
Combustion and Emission Characteristics of Coal-Based Hybrid Fuel Diesel Engine at High Altitude. Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 39(5), 1161-1167.
Yepez C.N.M. (2018)
Advantages of the use of biodiesel B10 (Ricinus communis) on Diesel fossil in the protection of the environment. Bionatura, 3(2), 582-585.
10.21931/RB/2018.03.02.4
Li G. (2017)
Performance and Emissions of a China V Diesel Engine at Different Altitudes. Neiranji Gongcheng/Chinese Internal Combustion Engine Engineering, 38(6), 29-34.
10.13949/j.cnki.nrjgc.2017.06.005
Zhou G. (2016)
Combustion temperature characteristics of a common rail diesel engine under high altitude conditions. Neiranji Xuebao/Transactions of CSICE (Chinese Society for Internal Combustion Engines), 34(4), 296-303.
10.16236/j.cnki.nrjxb.201604040
Gómez A. (2016)
Effect of ethanol-diesel fuel blend on diesel engine emissions produced by different bus fleets. Journal of Energy Engineering, 142(2),
10.1061/(ASCE)EY.1943-7897.0000315
Ertesvåg I.S. (2015)
Exergy calculations based on a fixed standard reference environment vs. the actual ambient conditions: Gas turbine and fuel cell examples. International Journal of Exergy, 16(2), 239-261.
10.1504/IJEX.2015.068209
Chang G.L. (2014)
Effect of inlet air heating on start characteristics of a common-rail diesel engine in high altitude environment. Applied Mechanics and Materials, 488, 1052-1056.
10.4028/www.scientific.net/AMM.488-489.1052
Zhou G. (2014)
Combustion characteristics of common rail diesel engine under part load operating conditions at high altitude. Ranshao Kexue Yu Jishu/Journal of Combustion Science and Technology, 20(2), 147-151.
10.11715/rskxjs.R201309009
He C. (2011)
Emission characteristics of a heavy-duty diesel engine at simulated high altitudes. Science of the Total Environment, 409(17), 3138-3143.
10.1016/j.scitotenv.2011.01.029
López J.D. (2011)
LQR control for speed and torque of internal combustion engines. IFAC Proceedings Volumes (IFAC-PapersOnline), 44(1 PART 1), 2230-2235.
10.3182/20110828-6-IT-1002.02176