Metakaolin concrete: Carbonation and chloride behavior

  • Ruby Mejía de Gutiérrez Universidad del Valle
  • Cesar Rodríguez Universidad del Valle
  • Erich Rodríguez Universidad del Valle
  • Janneth Torres Universidad Nacional de Colombia
  • Silvio Delvasto Universidad del Valle
Keywords: Metakaolin, silica fume, blended concretes, carbonation, chloride permeability

Abstract

The purpose of this paper is to present the results obtained in an experimental study that analyzed the performance of different concrete mixes. These mixes were produced with 90% of ordinary Portland cement (OPC) and the other 10% with the additions of metakaolin (MK) and silica fume (SF). Four types of MK were tested; two of these were produced by a thermal treatment on Colombian kaolin. The others two were imported from the international commercial market. The factors evaluated in all the concrete mixes were the following: compressive strength, water absorption and total volume of permeable porosity, capillary absorption, carbonation depth and chloride penetration. The concrete samples were submitted into an accelerated carbonation process inside a climatic chamber (30º C, 70% H.R. and 2.25% CO2 ). At 28 days of curing the carbonation depths for the blended concrete mixtures were greater than the one obtained in the OPC concrete without addition. With a prolonged curing age in all samples, with or without mineral additions, tend to slow the carbonation rate in the concrete. The resistance of the concrete to the chloride penetration was evaluated according to ASTM standard C1202. This study proved that blended concrete specimens have a lower capillary absorption and a higher chloride penetration resistance once these were compared with OPC concrete specimens without addition.

|Abstract
= 158 veces | PDF (ESPAÑOL (ESPAÑA))
= 84 veces|

Downloads

Download data is not yet available.

Author Biographies

Ruby Mejía de Gutiérrez, Universidad del Valle

Escuela de Ingeniería de Materiales

Cesar Rodríguez, Universidad del Valle

Escuela de Ingeniería de Materiales

Erich Rodríguez, Universidad del Valle

Escuela de Ingeniería de Materiales

Silvio Delvasto, Universidad del Valle

Escuela de Ingeniería de Materiales

References

B. Johannesson, P. Utgenannt. “Microstructural Changes caused by carbonation of cement mortar”. Cement and concrete Research. Vol. 31. 2001. pp. 925-931.

P. Sulapha, S. F. Wong, T. H. Wee, S. Swaddiwudhipong. “Carbonation of concrete containing mineral admixtures”. Journal of Materials in Civil Engineering. Vol. 15. 2003. pp. 134-143.

A. Steffens, D. Dinkler, H. Ahrens. “Modeling carbonation for corrosion risk prediction of Concrete Structures”. Cement and Concrete Research. Vol. 32. 2002. pp. 935-941.

K. Tuutti. Corrosion of Steel in Concrete. Swedish Cement and Concrete Research Institute. Stockholm. 1982. pp. 145-152.

L. Fernández, F. Puertas, M. T. Blanco-Varela, T. Vázquez. “Carbonatación de pastas de cemento de aluminato de calcio”. Materiales de Construcción. Vol. 51. 2001. pp. 127-136.

Y. F. Houst, F. H. Wittmann. “Depth Profiles of Carbonates formed during natural Carbonation”. Cement and Concrete Research. Vol. 32. 2002. pp. 1923-1930.

D. W. S. Ho, R. K. Lewis. “Carbonation of concrete and its prediction”. Cement and Concrete Research. Vol. 17. 1987. pp. 489-504.

E. Possan, J. Andrade, D. D. Molin. “Emprego da metodologia de superfície de resposta no estudo da carbonataçao do concreto com sílica activa”. Proc. 48° Congresso Brasileiro do Concreto. Rio de Janeiro. 2006. pp. 1-14.

J. Khunthongkeaw, S. Tangtermsirikul, T. Leelawat. “A study on carbonation depth prediction for fly ash concrete”. Construction and Building Materials. Vol. 20. 2006. pp. 744-753.

K. K. Sideris, A. E. Savva, J. Papayianni. “Sulfate Resistance of carbonation of plain and blended cements”. Cement and Concrete Composites. Vol. 28. 2006. pp. 47-56.

V. G. Papadakis. “Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress”. Cement and Concrete Research. Vol. 30. 2000. pp. 291-299.

J. G. Cabrera, G. R. Woolley. “A study of 25-year old pulverized fuel ash concrete used in foundation structures”. Proc. of Instrumentation Civil Engineering, Part 2. 1985. pp. 149-165.

C. D. Atis. “Accelerated carbonation and testing of concrete made with fly ash”. Construction and Building Materials. Vol. 17. 2003. pp. 147-152.

K. Wesche. Fly ash in concrete properties and performance, London: E&FN Spon. 1991. pp. 143-155.

A. Castro, R. Ferreira, A. M. Lopes, O. Cascudo, H. Carasek. “Durabilidade de concretos com adições minerais frente a carbonataçao e ao ataque por cloretos”. Proc. 46° Congresso Brasileiro do Concreto. Rio de Janeiro. 2006. pp. 662-680.

R. Mejía de Gutiérrez, J. Torres, C. E. Guerrero. “Análisis del proceso térmico de producción de una puzolana”. Materiales de Construcción. Vol. 54. 2004. pp. 65-72.

G. D. Shutter, K. Audenaert. “Evaluation of water absorption of concrete as a measure for resistance against carbonation and chloride migration”. Materials and Structures. Vol. 37. 2004. pp. 591-596.

G. Fagerlund. “On the capillarity of concrete”. Nordic Concrete Research. Vol. 1. 1982. pp. 6.1 - 6.20.

D. W. Ho, R. K. Lewis. “The water Sorptivity of Concretes: The Influence of Constituents under curing”. Durability of Building Materials. Vol. 4. 1987. pp. 241-252.

A. V. Saetta, R.V. Vitaliani. “Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures. Part II. Practical applications”. Cement and Concrete Research. Vol. 35. 2005. pp. 958-967.

F. Delfin, L. A. Ruiz. “Estudios sobre la Influencia del Tipo de Cemento en la Susceptibilidad a la Carbonatación del Hormigón”. Proc. X Jornada Chilena del Hormigón, IDIEM. Santiago de Chile. 1993. pp. 25-38.

E. I. Moreno. Carbonation of Blended Cement Concretes. PhD Thesis, Department of Civil and

Environmental Engineering University of South Florida. Tampa. 1999.

D. Linares, M. Sánchez. “Construction, operation and performance of a chamber for tests of accelerated carbonation”. Rev. Tec Ing. Univ Zulia. Vol. 26. 2003. pp. 34-44.

A. Castro, R. Ferreira, A. M. Lopes, O. Cascudo, H. Carasek. “Relationship between Results of Accelerated and Natural Carbonation in various Concretes”. Proc. International RILEM conference on the use of recycled materials in buildings and structures. Barcelona. 2004. pp. 988-997.

S. K. Roy, K. B. Poh, D. O. Northwood. “Durability carbonation and weathering studies”. Building and Environment. Vol. 34. 1999. pp. 597-606.

M. A. Sanjuan, C. Andrade, M. Cheyrezy. “Comparison between accelerated and natural carbonation results in different concretes”. Proc. International Congress on High Performance Concrete and Performance and quality of concrete structures 3. ACI SP207-17. Recife. 2002. pp. 263-278.

G. C. Isaia, M. Vaghetti, A. G. Gastaldini. “Comparative study of natural and accelerated carbonation tests of HPC with pozzolans: A preliminary approach”. Proc. International Congress on High Performance Concrete and Performance and quality of concrete structures 3, ACI SP207-17. Recife. 2002. pp. 467-488.

J. Torres, R. Mejía de Gutiérrez, F. Puertas. “Effect of kaolin treatment temperature on mortar chloride permeability”. Materiales de Construcción. Vol. 57. 2007. pp. 61-69.

Published
2013-07-24
How to Cite
Mejía de Gutiérrez R., Rodríguez C., Rodríguez E., Torres J., & Delvasto S. (2013). Metakaolin concrete: Carbonation and chloride behavior. Revista Facultad De Ingeniería Universidad De Antioquia, (48), 55-64. Retrieved from https://revistas.udea.edu.co/index.php/ingenieria/article/view/16019